Determining and Detecting Permission Issues of Wearable
Apps

Suhaib Mujahid

A Thesis
in
The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of
Master of Applied Science (Software Engineering) at
Concordia University

Montréal, Québec, Canada

January 2018

© Suhaib Mujahid, 2018

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Suhaib Mujahid

Entitled: Determining and Detecting Permission Issues of Wearable Apps
and submitted in partial fulfillment of the requirements for the degree of
Master of Applied Science (Software Engineering)

complies with the regulations of this University and meets the accepted standards with respect to
originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Weiyi Shang

Examiner
Dr. Yann-Gael Gueheneuc

Examiner
Dr. Tse-Hsun Chen

Supervisor

Dr. Emad Shihab

Approved by

Sudhir Mudur, Chair
Department of Computer Science and Software Engineering

2018

Amir Asif, Dean
Faculty of Engineering and Computer Science

Abstract

Determining and Detecting Permission Issues of Wearable Apps

Suhaib Mujahid

Wearable apps are becoming increasingly popular. Nevertheless, to date, very few studies have
examined the issues that wearable apps face. Prior studies showed that user reviews contain a
plethora of insights that can be used to understand quality issues and help developers build better
quality mobile apps.

Therefore, in this thesis, we start by empirically studying user reviews to understand the user
complaints about wearable apps. We manually sample and categorize 2,667 reviews from 19 An-
droid wearable apps. Additionally, we examine the replies posted by developers in response to user
complaints. This study allows us to determine the type of complaints that developers care about
the most and to identify problems that, despite being important to users, do not receive a proper
response from developers.

We find that the most frequent complaints are related to Functional Errors, Cost, and Lack of
Functionality, whereas the most negatively impacting complaints are related to Installation Prob-
lems, Device Compatibility, and Privacy & Ethical Issues. We find that developers mostly reply to
complaints related to Privacy & Ethical Issues, Performance Issues, and notification-related issues.
Furthermore, we observe that when developers reply, they tend to provide a solution, request more
details, or let the user know that they are working on a solution. Our results highlight the issues
that users face the most, and the issues to which developers should pay additional attention to due
to their negative impact.

Based on these results from the first empirical study, we investigate the most negatively im-

pactful complaints. We observe that mainly two permission problems are a common factor to raise

iii

issues that cause these complaints -namely the permission mismatch problem and the problem of
superfluous features. As a result, we propose a technique to detect permission problems in wearable
app. To operationalize our technique we developed a tool, called PERMLYZER, that automatically
detects these two problems from Android APKs. We then perform an empirical study on of 2,724
free wearable apps. Our findings show that the permission mismatches exist in 6.1% of released
apps on the app store. Moreover, we find that 19.2% of studded wearable apps contain superfluous

features.

v

Related Publications

The following publications are related to this thesis:

e S. Mujahid, G. Sierra, R. Abdalkareem, E. Shihab, W. Shang, Examining User Complaints
of Wearable Apps: A Case Study on Android Wear, In Proceedings of 4th IEEE/ACM Inter-

national Conference on Mobile Software Engineering and Systems (MOBILESoft’17).

e S. Mujahid, Detecting Wearable App Permission Mismatches: A Case Study on Android
Wear, In Proceedings of the 11th Joint Meeting of the European Software Engineering Con-
ference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering (ES-

EC/FSE’17), Student Research Competition.

e S.Mujahid, G. Sierra, R. Abdalkareem, E. Shihab, W. Shang, An Empirical Study of Android
Wear User Complaints, In Empirical Software Engineering Journal (EMSE), 2018. [Major

Revision]

The following publications are not directly related to the material in this thesis, but were pro-

duced in parallel to the research performed for this thesis.

e R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, and E. Shihab, Why Do Developers Use
Trivial Packages? An Empirical Case Study on npm, In Proceedings of the 11th Joint Meeting
of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the

Foundations of Software Engineering (ESEC/FSE’17).

Statement of Originality

I, Suhaib Mujahid, hereby declare that I am the sole author of this thesis. All ideas and inven-
tions attributed to others have been properly referenced. This is a true copy of the thesis, including
any required final revisions, as accepted by my examiners. I understand that my thesis may be made

electronically available to the public.

vi

Dedication

To my parents, my sisters, and my grandmother.

vii

Acknowledgments

First and foremost, I would like to thank Allah for blessing me with this opportunity.

I would like to thank my supervisor Dr. Emad Shihab for his endless support and dedication
during this journey, as well as his unparalleled motivation and immense knowledge, without which
this thesis would not have been completed. I have learned a great deal from you, words could never
be enough to express my gratitude. You played formative roles in my development as a researcher

and as a person.

My appreciation extends to my fellow colleagues, Rabe Abdalkareem, Giancarlo Sierra, Sultan
Wehaibi, Ahmad Abdellatif, Jinfu Chen, Kundi Yao, Moiz Arif, Mohamed Elshafei and everyone

else in the Data-driven Analysis of Software (DAS) Lab.

It is a pleasure to thank my friends who inspired and supported me tirelessly through thick and
thin. A special thanks to Samer Sioure, Rame Kateb, Saif Masry, Amro Doufish, Khalil Edais, Ehab
Ewaiwi and Asem Mujahed. You guys always fueled me with utmost motivation. I am proud to call

you my closest friends.
Lastly, I thank my parents and my grandmother for always being there for me. The greatest

motivation that makes me continue my path toward success is seeing joy and pride in their faces. |

likewise thank my sisters for their unwavering moral support and encouragement.

viii

Contents

List of Figures xii
List of Tables xiii
1 Introduction and Problem Statement 1
1.1 Thesis OVEIVIEW o ot ittt e e e 2

1.2 Thesis Contributions Lo 4

2 Literature Review 5
2.1 Work Leveraging Mobile User Reviews 5

2.2 Work Focusing on Wearable Apps 8

2.3 Work Focusing on Manifest and Permissions 9

3 An Empirical Study of Android Wear User Complaints 11
3.1 Introduction e e e e e 11

32 Study Design 14
3.2.1 Data Collection and Selection 14

3.2.2 Manual Classification of User Reviews 15

33 Results. e e 18
3.3.1 What do Wearable App Users Complain About? 18

3.3.2 Which User Complaint Types are the Most Negatively Impacting? 21

3.3.3 What Types of Complaints Do Developers Reply to? 23

3.3.4 How Do Developers Reply to Complaints? 26

ix

3.4 DISCUSSION .« v v v v v e e e e e e e e e e e 27

3.4.1 Comparing Wear and Handheld Device User Complaints 28
34.2 Update-Related Complaints 30
3.5 Threatsto Validity e 30
3.6 Conclusion e e 32
Detecting Permission Problems of Wearable Apps 34
4.1 Introduction L 34
42 Background e 36
4.2.1 Android Platform and Distribution of Wearable Apps 36
4.2.2 The Concept of Permissions in Android Platform 37
423 AppCompatibility 38
43 Problems e e 40
4.3.1 Permission Mismatches Lo L. 40
432 Superfluous Features, 41
4.4 Study Setupo e e e 42
441 Dataset L 42
442 Detecting Permission Mismatches 43
4.4.3 Detecting Superfluous Features 45
4.44 Generate the Final Report & Suggest Fixes 47
45 Results. oL 48
4.6 DISCUSSION oL e e e e 53

4.6.1 Does matching the permissions contribute to introduction of unused permis-

SIONS? . . L L e e 55

4.6.2 Overprivileged Permissions Vs. Unused Permissions 56

477 Threatsto Validity 56
4.8 Conclusion 57
Summary, Contributions and Future Work 59
5.1 Summary of Addressed Topics 59

5.2 Contributions e e 60

53 Future Work oL 61
5.3.1 Considering other aspects to assess the impact of user complaints 61

5.3.2 Expanding the scope of ourtool 61

5.3.3 Measuring the impact of the requested permissions and features 61

5.3.4 Extending to other platforms 61
Bibliography 63

X1

List of Figures

Figure 3.1 Overview of the User Review and Developer Reply Classification Process . 14
Figure 3.2 Web application for classifying wearable apps’ user reviews. 17
Figure 3.3 Impactful complaint types vs. developer replies. 24
Figure 3.4 Percentage of developer reply types. 27
Figure 4.1 The overview of data collection process. 42
Figure 4.2 The approach overview. o 43
Figure 4.3 Histogram showing the number of wearable and handheld apps at each level

of requested permisSions. e e e e e e 49
Figure 4.4 The number of missed underlying features in the studied apps. 52

Xii

List of Tables

Table 3.1 Statistics of Studied Android Wearable Apps
Table 3.2 User Complaint Types and the Row Percentage of Reviews in each one. . . .
Table 3.3 User Complaint Types Rank & Median Percentage for the Most Frequent and
the Most Impactful Complaints.
Table 3.4 Median and percentage values for Developer Replies and Reply Time in days
PET CACZOTY. . o v v v v e e e e e e e e e e e e e e
Table 3.5 Types of Developer Replies
Table 3.6 Comparison of Complaint Types for Wear and Handheld Devices. Based on
the Findings Reported by Khalid, Shihab, Nagappan, and Hassan (2015)
Table 4.1 The most mismatched permissions in the studied apps.
Table4.2 The underlying features with the percentage of handheld and standalone wear-
able apps that declared/missed the underlying features.
Table 4.3 List of unused permissions that introduced superfluous features with the per-
centage of affected handheld apps.
Table 4.4 List of unused permissions that introduced superfluous features with the per-

centage of affected standalone wearable apps.

xiii

50

54

54

Chapter 1

Introduction and Problem Statement

Wearable devices i.e., smart watches and fitness trackers, are becoming increasingly popular
and are expected to reach 101 million devices by 2020 (Chauhan, Seneviratne, Kaafar, Mahanti,
& Seneviratne, 2016). Wearable devices have unique characteristics that pose challenges when
compared to other platforms or devices (Rawassizadeh, Price, & Petre, 2015). These devices provide
their developers with access to a diverse set of sensors and features (e.g,. physiological, biochemical,
as well as motion sensing (Bonato, 2010; Teng, Zhang, Poon, & Bonato, 2008)) that can be used
to enhance the user experience (Android documentation, 2016a). As such, developers began to
develop apps that are specifically designed to run on these wearable devices, called wearable apps.
Wearable apps are different than handheld apps that run on mobile phones (Wright & Keith, 2014),
since they: 1) are often very lightweight (resource wise) (Park & Jayaraman, 2003), 2) are meant to
run on very small screens (Tehrani & Michael, 2014), 3) have access to a different set of sensors (Do,
Martini, & Choo, 2017), and 4) heavily depend on a mobile device to perform most of the expensive
processing (Chauhan et al., 2016; J. Wei, 2014).

A fundamental change introduced by mobile apps (i.,g. handheld and wearable apps) is the
way that they are released to users, which is through app stores. App stores allow users to directly
provide feedback on the mobile apps through user reviews. Although these user reviews were meant
to simply provide feedback about the apps, they proved to be much more useful (Galvis Carrefio
& Winbladh, 2013; Harman, Jia, & Zhang, 2012; Pagano & Maalej, 2013). For example, studies

have shown that they can be used to prioritize devices to test (Khalid, Nagappan, Shihab, & Hassan,

2014), prioritize feature improvements (Keertipati, Savarimuthu, & Licorish, 2016), and/or can be
used to understand user problems so that developers can avoid low ratings, which can have a major
impact on the app’s user base, revenues and the success of the app in general (Di Sorbo et al., 2016;
Finkelstein et al., 2017; Guzman & Maalej, 2014).

Because wearable apps are a new paradigm, we leveraged these user reviews to understand the
problems users face when using wearable apps so that developers and researchers can address them.
We perform a qualitative study, involving more than 2,600 user reviews and present our findings
in Chapter 3 of this thesis. One of our main findings is that connection and device compatibility
issues are some of the most impacting issues for users of wearable apps. Hence, we next perform
an empirical study to investigate the source of these highly negatively impacting issues. We find
that the permissions model used for wearable apps is one source of these problems, that can be
automatically fixed. Hence, in Chapter 4 of the thesis, we empirically analyzed the permissions
issues that arise. Our thesis contributions help build solid empirical knowledge in a new field,
wearable apps.

In the rest of the introduction, we provide a more detailed overview of the thesis’ chapters and

list our contributions.

1.1 Thesis Overview

The body of the thesis is composed of two main chapters:

Chapter 3: An Empirical Study of Android Wear User Complaints

Since the practice of developing wearable apps is a relatively new concept, we start by under-
standing the main issues in developing these wearable apps. To do so, we study user complaints
through the examination of users reviews posted on Google Play store. We do so since previous
studies showed that user review are a rich source of information that can highlight the main prob-
lems faced by app users and reflect the challenges of developing such apps (Palomba et al., 2015;
Panichella et al., 2015). We conducted a qualitative analysis where we analyze 2,667 user’s review

and find that:

e Functional Errors, Cost, and Lack of Functionality are the three most frequent complaints.

o [Installation Problems, Device Compatibility, and Privacy & Ethical Issues are the most neg-
atively perceived by users. Users that encounter Installation Problems of wearable apps are

five times more likely to give a 1-star review than a 2-star review.

e Developers are most likely to reply to complaints related to Privacy & Ethical Issues, Perfor-
mance Issues, and Spam Notifications. We also contrast the complaints based on their impact
and the developer replies and find that Installation Problems, Device Compatibility, and Con-

nection & Sync Issues are most impacting, but have a low response rate from developers.

e When developers reply to user complaints, they often try to get more information or provide

potential workarounds to solve the complaints.

Chapter 4: Detecting Permission Problems of Wearable Apps

Motivated by the finding in the previous study, particularly the fact that most impacting issues
are related to installation and compatibility issues, we further empirically examined issues related
to permissions in the context of wearable apps. We identified two main permission problems: 1)
permission mismatch, which refers to the case where the permissions declared in the mobile and
the wearable versions of the app do not match - such permission mismatches may cause installation
and connection issues; and 2) superfluous features, which refers to the case where an app requests a
permission that requires a specific hardware resource (e.g., access to the microphone) without really
needing that permission - such superfluous features can cause device incompatibility issues. We
conducted an empirical study on 2,724 wearable apps to examine the prevalence of these problems

and their impact on the wearable apps. Our findings show that:

e The permission mismatch problem exists in 6.1% currently released apps on the Google Play

store.

e Out of the apps that requires underlying (hardware) features, 52.4% of embedded wearable

apps and 80.5% of standalone wearable apps have at least one superfluous feature.

o All the studied apps missed a declaration of underlying features for one or more of their per-
missions; which shows that developers may not know the mapping between the permissions

they request and the hardware features.

To alleviate the problems due to permission mismatches and superfluous features, we devise a
technique, called PERMLYZER that can help automatically highlight and suggest fixes for the two

aforementioned problems.

1.2 Thesis Contributions

The main contributions of the thesis are:

e Empirically investigate user complaints in wearable apps by manually classify 2,667 reviews
belonging to 19 wearable apps; then measured the frequency of the complaints and how

negatively they are perceived by users.

e Examine the developer replies to the studied complaints in order to better understand the areas

that receive enough attention and areas that are important to the users.

e Define and examine the two main permission problems that are related to the most nega-
tively impactful user complaints; then perform an empirical study to examine them through

investigating 2,724 embedded apps and 339 standalone wearable apps.

e Implement our approach of detecting wearable permissions’ problems in a tool called PERMLYZER,

which will be freely available.

e Provide our dataset of the crawled apps’ APKs, the detailed analyses data, the collected 1.2

million reviews, and the manually classifying of the reviews to be publicly available.

Chapter 2

Literature Review

The work that is most related to our study falls into three main categories: work that leveraged

mobile user reviews, work focusing on wearable apps, and work focusing on Android permissions.

2.1 Work Leveraging Mobile User Reviews

One of the first studies to leverage mobile app reviews was done by Harman et al. (2012). In
their paper, the authors studied the correlation of user reviews with key performance metrics such
as the number of downloads. They found that there is a strong correlation between app ratings and
its rank based on the number of downloads, suggesting that developers should pay close attention
to their user ratings. More recently, Finkelstein et al. (2017) extended the work by Harman et al.
(2012), which mined data from the Blackberry World App Store to analyze the correlation between:
the customer rating of an app from user reviews, its price, popularity (based on downloads), and
claimed features that extracted from each app’s description with natural language processing (NLP)
techniques. The authors found that there is a strong correlation between the customer rating of an
app and its popularity, and a moderate correlation between price and the claimed features of an app.

Other studies mined user reviews to better understand the contents of these user reviews. Khalid
et al. (2015) studied low-rated user reviews from 20 free iOS apps in order to help developers
understand their nature. They exposed 12 types of complaints and found that feature requests,

functional errors and, crashing apps were the most frequent reasons for negative reviews, while

privacy and ethical concerns corresponded to the most impactful reviews that mostly lowered the
rating of an app. Ha and Wagner (2013) manually analyzed the user reviews of 59 Android apps
to examine the impact of privacy and ethical issues. They found that only around 1% of the apps
contain complaints related to privacy and ethical issues. Hoon, Vasa, Schneider, and Mouzakis
(2012) and Vasa, Hoon, Mouzakis, and Noguchi (2012), reviewed the vocabulary of 8.7 million
user reviews from the Apple App Store showing a link between the length of a review and its given
rating.

In other work, Fu et al. (2013) automated the analysis of over 13 million reviews of more than
a hundred thousand apps in the Google Play store using Latent Dirichlet Allocation model (LDA).
They uncovered 10 unique topics corresponding to user complaints; they also found that there is a
significant difference between free and paid apps because paid apps often present a complaint topic
of the involved pricing, absent in the user reviews of free ones. Similarly, Chen, Lin, Hoi, Xiao,
and Zhang (2014) created a framework to automatically extract the most informative reviews from
a data set of mobile apps using NLP techniques. They found that frequently, the amount of reviews
for an app can be too large for human reading or understanding, and that only 35.1% of the reviews
actually contain valuable information that developers could use for app improvement. Therefore,
their framework automates an approach to filter, group, rank and visualize the informative portions
of the reviews only.

Other work by Mcllroy, Ali, Khalid, and Hassan (2016) found that up to 30% of mobile app
reviews can contain multiple topics of information and proposed an automated approach for labeling
the user reviews, which reached a precision of 66% and 65% of recall while classifying them in 13
different categories.

Regarding categorization of developer replies to the low scored user reviews, a recent study
by Mcllroy, Shang, Ali, and Hassan (2015) introduced the benefits of responding to app reviews,
indicating that following a response users would increase the review rating 38.7% of the time by
20% of the previous score.

Panichella et al. (2015) studied the structure, sentiment and text features of mobile app reviews
and proposed: 1) a taxonomy of 4 categories related to software maintenance and evolution tasks

in which to classify app user reviews; and 2) an approach to automatically classify them using

NLP, text analysis and sentiment analysis techniques. The authors combined these techniques using
machine learning and empirically evaluated their classifiers, showing that their approach can aid
developers to obtain the intention from user reviews. Later, Panichella et al. (2015) extended their
work and implemented their approach in a tool named ARDOC Panichella et al. (2016) that auto-
mates the classification of user reviews. The performance of the tool was validated by the developers
of 3 real-world mobile apps and an external software engineer. ARDOC achieved promising results
with precision, recall and F-Measure values ranging between 84% to 89%.

Di Sorbo et al. (2016) introduced a model to obtain the topics contained in user reviews from
mobile apps, which they call URM (User Reviews Model). The model was combined with the
approach presented in Panichella et al. (2015) to capture the intentions of user reviews in a new
approach named SURF (Summarizer of user reviews Feedback). SURF generates summaries from
sets of user reviews and clusters them considering both, the intention and topics found in user
reviews to recommend software changes. The usefulness of this approach was validated on 17
mobile apps by 23 developers and researchers. As a follow-up, Di Sorbo, Panichella, Alexandru,
Visaggio, and Canfora (2017) implemented and validated SURF as a tool to automate the processing
of user reviews for developers.

More recently, Ciurumelea, Schaufelbhl, Panichella, and Gall (2017) manually analyzed 1,566
user reviews from 39 mobile apps and defined a multi-level taxonomy that is specific to the mobile
domain. The authors introduced an approach, called URR (User Request Referencer) that not only
automatically classifies user reviews in their multi-level taxonomy, but also points developers to the
artifacts that need to be modified to address a particular user review. They showed that doing so
reduces the time it takes to process user reviews manually by up to 75%.

With another perspective, Palomba et al. (2017) presented CHANGEADVISOR, an approach
that clusters multiple user reviews that contain change requests to recommend developers which
artifacts to modify in a mobile app to address user feedback. This approach uses NLP and clustering
techniques to sort reviews based on their content, semantics and structure. A validation conducted
with the developers of 10 mobile apps highlighted the usefulness of this approach when mining
large numbers of user reviews, providing 81% of precision and 70% recall when recommending

changes.

There are also a plethora of other works on mobile apps, that leverage users reviews for their
techniques. Due to space limitations, we only discuss the most relevant studies in this section,
however, we refer the reader to a recent survey by Martin, Sarro, Jia, Zhang, and Harman (2017) for
a more comprehensive list of studies on mobile apps.

Our work differs from the prior work since 1) we focus on the user reviews of wearable apps, 2)
we triangulate two data sources user reviews and developers replies to understand the types of user

complaints that developers care about.

2.2 Work Focusing on Wearable Apps

Very few studies have focused on the study of wearable apps, but many different paths are begin-
ning to get explored in the domain. In our previous work (Mujahid, Sierra, Abdalkareem, Shihab,
& Shang, 2017), we studied the user complaints of wearable apps by analyzing 589 reviews from
6 Android wearable apps. Our main findings indicate that users complain most about functional
errors, lack of functionality, and cost of wearable apps.

Recently, Zhang and Rountev (2017) presented a formal semantics to statically model the noti-
fication mechanism of Android Wear, and contributed with the development of two domain-specific
tools, one for test case execution and another for automated test generation. Ahola (2015) exposed
3 issues and limitations in Android Wear platform found during wearable app development that are
better wear Internet connectivity, virtual button support for watch faces, and software configurable
language support for voice input. From a different perspective, Lyons (2015) did a study on the
user perceptions of functionality and design of smart watches, including android wearable devices.
Based on user feedback and in contrast to traditional watches, possible features for future wearable
app are suggested. Min et al. (2015) explored the battery usage of wearable apps and performed an
online survey to get direct feedback and concerns from users. They found that most users do not
complain about the battery usage of their wearable devices. Chauhan et al. (2016) did a previous
categorization of smart watch apps from Samsung, Apple, and Android Wear. They used data from
Android Wear Center (Wearable Software, 2016) and GoKo (Korner, Hitzges, & Gehrke, 2016)

as sources to get the wearable app identifiers for crawling their information; we applied the same

approach to initialize our crawling phase.

Our work differs from prior work on wearable apps since, to the best of our knowledge, our
work is one of the first to analyze their user complaints in depth. Moreover, we differ from previous
work since we not only investigate the categories, frequency and impact of low rated user reviews;
but we also contrast our findings to similar ones in the domain of handheld mobile devices. By
doing this comparison, we are able to bring several implications for wearable app development into

the community spotlight.

2.3 Work Focusing on Manifest and Permissions

A number of studies focused on permission issues in the context of Android apps. For ex-
ample, Stevens, Ganz, Filkov, Devanbu, and Chen (2013), and Barrera, Kayacik, van Oorschot,
and Somayaji (2010) found issues and misuses in declaring app permissions. Barrera et al. (2010)
performed an empirical analysis on the expressiveness of Android’s permission sets and discussed
some potential improvements for the Android permission model. Also, their study found that while
Android has a large number of permissions restricting access to advanced functionality on devices,
only a small number of these permissions are actively used by developers.

X. Wei, Gomez, Neamtiu, and Faloutsos (2012) conducted a study on the evolution of Android
permissions, focusing how the set of permissions has evolved. They analyzed patterns and per-
mission distributions, and reported that applications tend to be overprivileged and to request more
permissions over time.

Felt, Chin, Hanna, Song, and Wagner (2011) proposed the first solution to automatically detect
overprivileged permissions in Android apps and found 33.7% of the apps in their study were over-
privileged. Their tool STOWAWAY depends on automated testing tools to analyze the Android APIs
in order to build the permission map that is necessary for detecting overprivileged permissions. Au,
Zhou, Huang, and Lie (2012) present the tool PSCOUT that outperform STOWAWAY which adopted
static analysis on the source code of the Android platform to extract the permission map. Later,
Pandita, Xiao, Yang, Enck, and Xie (2013) present WHYPER, a framework using Natural Language

Processing (NLP) techniques to identify sentences that describe the need for a given permission

in an app description. More recently, Karim, Kagdi, and Penta (2016) presents APMINER, which
recommend the permissions that the app should request based on the usage of APIs and permissions
in other apps published in the app store. Bao, Lo, Xia, and Li (2016) propose an approach to o
improve the effectiveness of a prior work by Karim et al. (2016). The proposed approach is based
on collaborative filtering technique, which considers apps that use similar APIs, usually support
similar features, so the required permissions are usually similar too.

Jha, Lee, and Lee (2017) built a tool called MANIFESTINSPECTOR to detect mistakes in writing
Android manifests for mobile apps (including the permissions). They found that more than 78%
of the studied apps have at least one configuration error. Android LINT (Android Studio, 2017b)
is an analysis tool built by Google that statically analyzes source code files, including manifest
files. MANIFESTINSPECTOR (Jha et al., 2017) is one of the best performing tools when it comes to
number of detecting errors in Android manifest files; this tool’s functionality is based on a number
of effective rules. Currently, LINT (in Android Studio 1.5) defines only 30 rules related to manifest
files while MANIFESTINSPECTOR defines 116 rules. Nevertheless, none of these rules specifically
target the manifest files’ configuration for wearable apps.

Our study differs from prior work since we focus on the inconsistent configuration problems
(permission mismatches and superfluous features) that may exist between wearable and handheld

versions of an app.

10

Chapter 3

An Empirical Study of Android Wear

User Complaints

3.1 Introduction

Mobile apps are very popular and have been the focus of numerous studies in recent years (Mar-
tin et al., 2017; Nagappan & Shihab, 2016). A fundamental change introduced by mobile apps is
the way that they are released to users, which is through app stores. App stores allow users to
directly provide feedback on the mobile apps through user reviews. Although these user reviews
were meant to simply provide feedback about the apps, they proved to be much more useful (Galvis
Carrefio & Winbladh, 2013; Harman et al., 2012; Pagano & Maalej, 2013). For example, studies
have shown that they can be used to prioritize devices to test (Khalid et al., 2014), prioritize feature
improvements (Keertipati et al., 2016), and/or can be used to understand user problems so that de-
velopers can avoid low ratings, which can have a major impact on the app’s user base, revenues and
the success of the app in general (Di Sorbo et al., 2016; Finkelstein et al., 2017; Guzman & Maalej,
2014).

Recently, wearables that complement handheld devices were introduced. Wearable devices i.e.,
smart watches and fitness trackers, are becoming increasingly popular and are expected to reach
101 million devices by 2020 (Chauhan et al., 2016). Wearable devices have unique characteristics

that pose challenges when compared to other platforms or devices (Rawassizadeh et al., 2015).

11

These devices provide their developers with access to a diverse set of sensors and features (e.g,.
physiological, biochemical, as well as motion sensing (Bonato, 2010; Teng et al., 2008)) that can be
used to enhance the user experience (Android documentation, 2016a). As such, developers began
to develop apps that are specifically designed to run on these wearable devices, called wearable
apps. Wearable apps are different than handheld apps that run on mobile phones (Wright & Keith,
2014), since they: 1) are often very lightweight (resource wise) (Park & Jayaraman, 2003), 2) are
meant to run on very small screens (Tehrani & Michael, 2014), 3) have access to a different set of
sensors (Do et al., 2017), and 4) heavily depend on a mobile device to perform most of the expensive
processing (Chauhan et al., 2016; J. Wei, 2014). To the best of our knowledge, very few studies have
focused on wearable apps and their user reviews to this date.

Therefore, similar to the prior studies on (handheld) mobile app reviews (Ha & Wagner, 2013;
Hoon et al., 2012; Khalid et al., 2015; Vasa et al., 2012), we also investigate user complaints but
focusing on reviews from wearable apps. Note that the goal of our study is not to highlight or
surface differences between complaint types from mobile and wearable apps. We aim to investigate
user complaints in wearable apps (even if they are the same than for mobile). With this in mind, we
did find some complaint types differ from the ones found in the mobile domain.

To perform our study, we manually classify 2,667 reviews belonging to 19 wearable apps. The
reviews were tagged by two independent researchers and grouped into 15 different categories. For
each category, we measured the frequency of the complaints and how negatively they are perceived
by users. We measure this negative perception based on how low they rate complaints of a certain
category. Since this negative perception is reflected into low user ratings, we rank the impact of
each complaint category based on the ratio of 1-star rated reviews to 2-star rated reviews.

We also examine the developer replies to these complaints in order to better understand the areas
that receive enough attention and areas that are important to the users, but not well attended by the
developers. Our study concerns two main areas: 1) examining user complaints and II) examining

developer replies. For each area, we ask two research questions:

I.1 What do Wearable App Users Complain About?

Our findings indicate that Functional Errors, Cost, and Lack of Functionality are the three

12

1.2

most frequent complaints.

What User Complaints are Most Negatively Impacting?

We find that Installation Problems, Device Compatibility, and Privacy & Ethical Issues are
the most negatively perceived by users. Users that encounter Installation Problems of wear-

able apps are five timesmore likely to give a 1-star review than a 2-star review.

Our findings provide insight to the developer and research community as to what issues wearable

app users face the most and which issues are most impactful.

I1.1

I1.2

What Types of Complaints Do Developers Reply To?

In addition, we also examined the developer replies to the user complaints. We find that devel-
opers are most likely to reply to complaints related to Privacy & Ethical Issues, Performance
Issues, and Spam Notifications. We also contrast the complaints based on their impact and the
developer replies and find that Installation Problems, Device Compatibility, and Connection

& Sync Issues are most impacting, but have a low response rate from developers.

How Do Developers Reply to Complaints?

We find that when developers reply to user complaints, they often try to get more information

or provide potential workarounds to solve the complaints.

Our results highlight areas that are of high importance to the users, but are not well addressed by

the developers, and vice versa.

In addition, we compare our findings to the handheld user complains reported by Khalid et

al. (2015). Our findings show that 11 of the 15 categories found in our research are common to

both handheld and wearable apps, however, 4 of the complaint types are unique to wearable apps,

namely - Lack of Functionality, Connection & Sync, Spam Notifications, and Missing Notifications.

Moreover, we find that similar to their findings, approximately 12% of the complaints occur after

an update. Our findings show that there is a need to ensure regression tests are performed before

wearable apps are updated. Furthermore, to enable future research and enable the replication of this

work, we make our dataset publicly available '.

'"https://github.com/suhaibtamimi/user_complaints_of_wearable_apps.dataset

13

https://github.com/suhaibtamimi/user_complaints_of_wearable_apps_dataset

User Reviews

0 G alnfaln
4 - > — e " 4 D: L (2,667 reviews)
o & |

> m _Developer Replies

4
Select complete Collect wearable Select low-rated Refine list of apps Sample & m m h m
set of wearable app reviews & reviews related to with >100 categorize L 82 replies)
apps developer replies wear functionality reviews low-rate reviews
Manually group user
. . . reviews & developer
(4,722 wearable apps) (1,284,349 reviews) (5,751 reviews) (19 wearable apps) (15 categories)

replies

Figure 3.1: Overview of the User Review and Developer Reply Classification Process

The rest of the chapter is organized as follows. Section 3.2 details our study design, including
our collection and selection methodology. Section 3.3 presents our results. Section 3.4 compares the
findings for wearable and handheld devices. Section 3.5 discusses possible the threats to validity.

Section 3.6 concludes the chapter.

3.2 Study Design

The goal of our study is: 1) to determine the most frequent and negatively impacting user
complaints of wearable apps and 2) to investigate the type of complaints that developers reply to
and the reply types. To do so, we mine the Google Play store for the reviews of wear apps. Figure 3.1
provides an overview of our approach. In the following sections we describe our data selection and

collection, as well as detail our review classification methodology.

3.2.1 Data Collection and Selection

For the purpose of our study, we select a number of wearable apps that have user reviews. First,
we obtained the available Android Wear apps on Google Play store by collecting their identifiers
from two alternative app markets: Android Wear Center (Wearable Software, 2016) and GoKo (Ko-
rner et al., 2016) that accessed on September 9th, 2016. The two aforementioned sources have been
used in prior work focusing on wearable apps (Chauhan et al., 2016). Then, we mined the wearable
apps using a data scrapper that we wrote. The scrapper collected various information about each

wear apps, including: the user reviews’ text, its rating, the developer’s reply to the review, if any,

14

and the apps’ overall rating. To enhance performance of the scrapper, it was deployed on a cluster
of machines in order to distribute the requests sent.

In total, we mined the data of 4,722 wearable apps from 2,732 unique developers, which con-
tained 1,284,349 user reviews. From the total number of mined apps, we found that 1,017 app did
not contain any user review at all, i.e., 21.5% of apps. Since we are interested in user complaints,
we selected low-rated reviews only (i.e., 1 and 2 stars rating). This was done following a prior study
by Khalid et al. (2015), with the rationale that low-rated reviews are most likely to contain user
complaints. We also noted, that 1,958 apps did not contain any 1 or 2 star rated user reviews, i.e.,
41.5% of apps. Considering we need a reasonable amount of data to perform our analysis, we only
selected apps with over 100 low-rated reviews. This left us with 5,751 low-rated user reviews from
19 wearable apps. Note that we include data from all available releases (up to the collection date)
of the 19 wearable apps.

Since this is the first study to examine user complaints for wearable apps (in addition to our
preliminary short study), we opt to perform our analysis of the user complaints manually. Given
that this manual classification is a time and resource intensive task, we selected a random statistically
representative sample of complaints from each application. The sample sizes were selected to attain
a 5% confidence interval and a 95% confidence level in the population being sampled. This random
sampling process resulted in 2,667 total reviews varying from 89 to 307 reviews per app. The list of
the studied wearable apps, their category on Google Play store, cost, overall rating, the number of
examined reviews, number of developers’ replies, and data span of reviews are shown in Table 3.1.

This data was collected in October 2016.

3.2.2 Manual Classification of User Reviews

Once we obtained all of the reviews, we took a statistical significant random sample® of 597
reviews from all the selected apps. We manually inspected and classified the sampled reviews twice,
(by two independent researchers) into different categories using an open coding approach (Seaman,

1999; Usman, Britto, Brstler, & Mendes, 2017).

The random sample of 597 reviews was taken out of 5,751 low-rated reviews to achieve a confidence level of 99%
and a confidence interval of 5%.

15

Table 3.1: Statistics of Studied Android Wearable Apps

Low Rated Sampled Developer Date span

Wear App Name Reviews Reviews Replies of Reviews
ZenWatch Manager 201 132 40 26/11/14 - 06/10/16
WatchMaker Premium Watch Face 501 218 22 31/03/15 - 07/10/16
Odyssey Watch Face 125 94 20 10/12/14 - 21/08/16
Skymaster Pilot Watch Face 152 109 20 02/11/14 - 28/09/16
Ranger Military Watch Face 163 115 23 29/12/14 - 20/09/16
Wear Mini Launcher 133 99 44 21/08/14 - 05/10/16
Wear Face Collection 136 101 21 18/07/14 - 20/09/16
InstaWeather for Android Wear 141 103 61 18/12/14 - 30/09/16
Motorola Connect 213 137 20 07/09/14 - 06/10/16
Watch Faces for Android Wear 154 110 10 25/10/14 - 30/09/16
Facer Watch Faces Android Wear 926 272 134 01/08/14 - 07/10/16
Bits Watch Face 116 89 59 20/08/15 - 01/10/16
WatchMaster - Watch Face 124 94 85 24/07/15 - 12/10/16
Luxury Watch Faces for Wear 115 89 79 02/09/14 - 07/10/16
Android Wear - Smartwatch 1,531 307 79 29/09/15 - 08/10/16
Weather Watch Face 279 162 32 20/07/14 - 21/09/16
Web Browser for Android Wear 142 104 33 23/07/14 - 04/10/16
Plants vs. Zombies Watch Face 369 188 0 03/01/15 - 30/09/16
LG Call for Android Wear 230 144 0 28/04/15 - 19/09/16
Total 5,751 2,667 782 -

Both classifications were done individually and independently. Each of the two classifiers clas-
sified the review into a certain category based on its content. Disagreements between the two clas-
sifiers were clarified. This step was done mainly to come up with an initial set of categories that the
reviews can be grouped into. For both researchers the categories were defined by the first half of the
sampled reviews. By the end of this step, the two researchers defined 15 different initial categories.
Note that throughout the thesis we also refer to these categories as complaint types.

Once we defined the initial 15 complaint types, we proceeded to categorize our set of reviews
composed by samples of each studied wear app (in total 2,667 reviews). To facilitate the catego-
rization of the reviews, we built a web-based tool. Figure 3.2 shows the main page of the developed
tool. It presented for each of the two people categorizing the review with all the review details and
the respective developer reply, if a developer posted a reply to the review. The tool also had the

option to add a new category in case a review belonged to a category that was not in our initial set.

16

DAS - Wearable Home Suhaib Mujahid ~

#205 4 ‘.‘ Motorola Connect Uninformative Installation Problems
2014-11-08. Rob Rohrback Issue After Update Battery Drainage
755 Performance Issue 0] Functional Error
Cannot see new faces_._ Lack of Functionality Feature Removal
UPDATE: cannot see the new watch faces on my watch. Have uninstalled and [] Feature Request Ul Problsems
reinstalled as well as reset my 360 to no avail. Please fix! | have had this app and my MissingNotifications [Ill] Spam Notifications
moto 360 since launch day. Randomly, this app keeps sending notifications to my Devica Compatibllity Synclssues
watch telling me to download the very same app. This started a few weeks ago. |
. . . R Pair Issues Connection & Sync Issues
wonder why it has no clue that its installed. Also, more color customization for
watch faces would be great and add more functionality. | don't lose my watch or App Crashing Cost
phone so don't need that. Can't Update Issue After OS Update
Notifications Delay Notifications Issues
2014-11-11 Hard to use Privacy & Ethical
If you haven't already, we recommend opening the Android Wear app on your phone, visiting
Misleading

Settings - Resync apps, and waiting a few minutes. If the issue still persists, please fill out the form
here so we can further investigate: http://goo.gl/forms/FNhmHypQzS We appreciate your patience
as we work to resolve this issue.

Save and Next

Figure 3.2: Web application for classifying wearable apps’ user reviews.

However, even though the tool had the option to add a new category in case a review belonged to
a category that was not in our initial set, the researchers did not come up with any new categories.
Every review was tagged with all suitable categories, i.e., one review can have one or multiple tags
based on its content. For example: if a user complaint mentions a battery drainage problem and
also a connection issue, the review will be classified with the Connection & Sync Issues and Battery
Drainage tags. In some instances, the user provided uninformative content in his review (e.g., ”Just
nonsense, | hated this game...”), in which case we put them in the *Uninformative’ category. The
process to categorize the user reviews took approximately 115 hours in total.

As in any other human activity, there may be some disagreements when classifying the user
reviews, and therefore, we applied a Cohen’s Kappa to measure the level of agreement between the
two individual classifications (Cohen, 1960). The Cohen’s Kappa coefficient has been commonly
used to evaluate inter-rater agreement level for categorical scales, and provides the proportion of

agreement corrected for chance. The resulting coefficient is scaled to range between -1 and +1,

17

where a negative value means poorer than chance agreement, zero indicates exactly chance agree-
ment, and a positive value indicates better than chance agreement (Fleiss & Cohen, 1973). The
closer the value is to +1, the stronger the agreement.

The level of agreement was +0.68, which is considered to be fair to good agreement (Fleiss
& Cohen, 1973). Out of the 2,667 classified reviews, 1,429 reviews had full agreement (i.e., both
classifiers had the same selection while tagging the reviews). The remaining 1,238 reviews had
a conflict in the classification, and for 710 reviews of them, the classification was a match for
one or more of the categories but different in some other(s). We examined all the reviews with a
classification conflict and did a post agreement on the tags for those reviews; for example, if the
first classifier tagged the review as Device Compatibility and the second one tagged it as Functional
Error, we put this review for discussion. The two classifying researchers presented a case s to
why they classify a review in a certain category and reached agreement; this scenario solved most
conflicts. When both researchers could not agree, a third researcher was consulted to break the tie

and reach a final classification.

3.3 Results

Once all the reviews in our dataset are categorized into the different complaint types, we proceed
to answer our research questions, pertaining to two areas: user complaints and developer replies.
In particular, we are interested in knowing what users complain about and what complaints tend
to have the most negative impact. As for the developer replies, we examine the complaints that

developers reply to and how they reply to them.

3.3.1 What do Wearable App Users Complain About?

Since wearable apps are an emerging trend, our goal is to understand the types of user com-
plaints so that developers can anticipate potential problems and plan their quality assurance efforts
accordingly. Similar to prior studies on user complaints for handheld device apps (Khalid et al.,
2015), we start by examining the different types of complaints based on the low-rated reviews of

wearable apps.

18

To come up with the different complaint types, we manually categorized the different wearable
app reviews as mentioned earlier in Section 3.2.2. We then rank the different complaint types based
on their frequency in the examined reviews.

Table 3.2 shows the 15 different complaint types that we discovered from the wearable app re-
views. For each category, we provide a brief description, an example review and the row percentage
of reviews in each complaint type. It is important to note that one review can present more than one
issue, hence, it can be mapped to more than one complain type. Thus the percentage of reviews sum
to more than 100%. From the table, we observe that many of the complaint types are related to the
features provided by the wearable apps (e.g., Feature Removal, Feature Request), the behavior of
the wearable apps (e.g., App Crashing, Notifications, Battery Drainage) and external factors (e.g.,
the Cost of the app, Privacy & Ethical Issues).

Next, to distinguish between the different complaint types, we measured the frequency of each
complaint type. To do so, we follow the same approach used by Khalid et al. (2015), where we
measure the percentage of reviews that belong to each complaint type on a per app basis. We
calculate the percentage per app since different apps can have a different number of reviews, and if
we do not normalize per app, then apps with more reviews could bias our results. Once we calculate
the percentage of reviews for each complain type, we take the median percentage (from all the
wearable apps) and assign it to the complaint type. Finally, we rank all of the complaint types from
1 - 15, where 1 is the highest (i.e., most frequent rank) and 15 is the least ranked.

The first three columns of Table 3.3 show the rank and median percentage of user reviews per
complaint type. From the table we observe that complaints related to Functional Errors (i.e., bugs
related to the functionality of the wearable app), Cost (i.e., issues related to the business model of
the wearable app) and Lack of Functionality (i.e., deficiencies in the functionality of the app) are
the most frequent complaints for wearable apps.

Our results highlight several new user complaint types that require attention from both, develop-
ers and software engineering researchers, such as: Connection & Sync, Missing Notifications, and
Device Compatibility issues. It is important to acknowledge that wearable devices rely on handheld
devices to perform expensive processing tasks, hence the connection and synchronization between

them is critical. Our findings highlight areas where wearable apps need to address to ensure the high

19

Table 3.2: User Complaint Types and the Row Percentage of Reviews in each one.

Complaint Type Description Example Review %0

App Crashing The wear app stops com- “This app always crash on my 8.0
pletely, goes idle or restarts phone.”

Battery Drainage = The wear app is draining the =~ “Worked less than half the time, and 7.4
battery excessively killed my Wear battery.”

Connection & Problems in connectivity “Watch faces don’t sync to watch. 18.1

Sync with the wearable Uninstalling until this is fixed.”

Cost Complaint about the wear “Have to purchase premium just to 5.6
app costs or business model download anything.”

Device Compati- The wear app is not compat- “Won’t work, only for famous smart 14.9

bility ible with a given device watch.”

Feature Removal A feature has been removed “The latest update removed the 1.4
after an update watch battery state/graph. Why?”

Feature Request The user requires a specific “Can we have a option to pick per- 3.0
new feature sonal images for the top half of ...”

Functional Error A bug related to the func- “Dont buy...even the weather does 26.1
tionality of the wear app not display correctly.”

Installation Prob- Issue while pushing the “App not pushed to watch.” 8.6

lems wear app to the wear device

Lack of Function- Absence or deficiency of “Nothing special about this app and 11.4

ality features in the wear app it’s faces. They’re barely accept-

able...”

Missing Notifica- The wear app lost or de- “Since I updated the app I get no no- 2.0

tions layed notifications tifications on either of my watches...”

Performance The wear app slows or over “The app performs very poorly even 2.1

Issue use the resource after the 1.4 update.”

Privacy & Ethical Invasion of privacy or ethi- “Oh joy, more permissions and infor- 0.9
cal concerns complaint mation gathering.. Smh”

Spam Notifica- The wear app generates “Keeps sending notifications to my 2.6

tions many unwanted nottifica- watch telling me to download ...”
tions

UI Problems Complaints about the inter- “Watch faces don’t fit and are even 6.0
face design off centre in compatibility mode.”

Uninformative User reviews that do not “It would not even let me play what 8.2

have any useful information

even is this garbage???”

20

Table 3.3: User Complaint Types Rank & Median Percentage for the Most Frequent and the Most
Impactful Complaints.

Complaint Type Most Frequent Most Impactful

Rank Median (%) ‘ Rank Median (1:2 star)
Functional Error 1 30.10 10 1.21
Cost 2 14.55 5 2.17
Lack of Functionality 3 14.22 8 1.46
Connection & Sync 4 10.03 4 2.63
Device Compatibility 5 9.57 2 4.10
UI Problems 6 7.34 14 0.78
Battery Drainage 7 7.06 12 1.06
App Crashing 8 6.38 6 2.06
Installation Problems 9 4.26 1 5.71
Feature Request 10 3.29 13 0.80
Spam Notifications 11 2.38 7 2.00
Performance Issues 12 1.98 15 0.65
Missing Notifications 13 1.65 11 1.17
Privacy & Ethical 14 1.12 3 3.17
Feature Removal 15 1.06 9 1.25

quality of apps. In particular, we recommend the development of tools and techniques that can assist
developers with connection and sync issues and device compatibility issues. This seems particularly
important for wearable apps, which typically require a mobile device for most useful features (e.g.,
sending out messages, or checking online resources). More generally, developers should be careful

when pricing/advertising their apps, since cost-related complaints are frequent for wearable apps.

The most frequent complaints from the wearable app users are related to function-

ality errors, cost and lack of functionality.

3.3.2 Which User Complaint Types are the Most Negatively Impacting?

In addition to examining the frequency of the complaint types, we would also like to examine
their potential negative impact. We examine the impact of each complaint type since, as previ-

ous work showed, the most frequent complaints may not be the most negatively impacting on the

21

users (Khalid et al., 2015). A negative impact can induce a snowball effect that will reduce the suc-
cess of an app on its marketplace over time. For example, a complaint type that is very frequent, but
that does not impact the users so much, may be better than a less frequent complaint type that has a
large negative impact on the users. To study impact, once again, we follow the same methodology
used by Khalid et al. (2015), where we measure the ratio of 1-to-2 star reviews for each complain
type. Similar to the case when we calculate the frequency, we perform this calculation on a per app
basis. Finally, we assign the median score from all the apps to the specific complaint type.

Table 3.3 (columns 4 and 5) show the of 1:2 star reviews for each complaint type. A 1:2 ratio
of 1.21 shows that there are 21% more 1-star reviews assigned to this complaint type than 2-star re-
views. A 1:2 ratio less than 1 indicates that there are more 2-star reviews assigned to the complaint
type. Typically, higher ratio numbers can indicate a higher negative impact, and vice versa. From
Table 3.3, we observe that the most impacting complaint types are the ones related to Installation
Problems, achieving a 1:2 ratio of 5.71. In addition to Installation Problems, Device Compati-
bility issues, and Privacy & Ethical Issues also have a substantial negative impact on users. It is
worth mentioning that compatibility to wearable devices is a challenge for developers to address,
particularly since the app store does not provide a way to filter apps based on a specific wearable
device; nor are developers able to provide multiple APKs based on the different wearable devices
configurations (Android documentation, 2016b).

Our finding show that the most frequent user complaints are not necessarily the most impactful
ones. A similar observation was made in the study by Khalid et al. (2015), in their study on mobile
handheld device apps. For example, the Installation Problems complaint type has been ranked ninth
in terms of number of complaints, while it is the highest impactful user complaint type.

Our finding that installation problems are highly impacting shows that wearable developers need
to carefully test their apps, particularly the Android wear apps since, there are many Android devices
that these wear apps need to be compatible with. Hence, we suggest the development of techniques
that can address these compatibility issues, in particular issues that may impact the installation of

wearable apps.

22

Table 3.4: Median and percentage values for Developer Replies and Reply Time in days per cate-
gory.

Complaint Type Developer Replies Reply Time

Rank Median (%) ‘ Rank Median (Days)
Privacy & Ethical 1 75.00 1 1
Performance Issues 2 58.33 14 4.5
Spam Notifications 3 50.00 6 2
Feature Removal 4 45.83 1 1
Missing Notifications 5 42.95 15 5.5
Cost 6 40.96 5 1.5
App Crashing 7 37.50 1 1
Device Compatibility 8 37.40 1 1
Installation Problems 9 37.30 6 2
UI Problems 10 36.93 13 4
Feature Request 11 33.33 12 3.5
Connection & Sync 12 31.77 6 2
Battery Drainage 13 25.00 11 3
Functional Error 14 22.22 10 2.5
Lack of Functionality 15 20.20 6 2

Installation problems, device compatibility issues and privacy & ethical issues are

the most negatively impacting complaints.

3.3.3 What Types of Complaints Do Developers Reply to?

Thus far, our study has mainly focused on user complaints. However, the Google Play store
provides the ability for developers to reply to user reviews in the hope of providing some clarification
or support. Therefore, we mined a set of developer replies in order to get an answer for which types
of user complaints developers care about the most. Complementing our user complaint data with
their respective developer replies gives us a two-dimensional view of the issues that both, users and
developers tend to care about.

Table 3.4 (columns 2 and 3) show the rank and median percentage value of developer replies
for the different complaint types. From the table, we observe that Privacy & Ethical Issues, Perfor-

mance Issues and Spam Notifications are the top three most replied-to complaint types. On the other

23

Least
Occurring

15 [Lack of Functionality F‘
Functional Error
14
13 Battery Drainage

12 ‘—\—(Connection & Sync
: { Feature Request F‘

11

10 .
Installation Problems

Ul Problems

J Device Compatlbllltyl)

App Crashing

‘ﬁ Missing Notifications}
4 ‘ﬁ Feature Removal }

: { Spam Notifications F’ [ertormance e }
' = ﬁ Privacy & Ethical }
Most

Occurring

Developer Replies Rank

Most 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 least

Impactful . Impactful
Complaints Impactful Rank

Figure 3.3: Impactful complaint types vs. developer replies.
The x-axis of the plot shows the rank of the most impactful complaint types. The y-axis shows the
rank of developer replies, while the size of the bubble represents the frequency of each complaint.

hand, Functional Errors (which is the most frequent type of complaint) and Installation Problems
(the most impacting) are not in the top most replied-to complaints. On the other hand, columns 4
and 5 in Table 3.4 show the rank and median time (in days) it took developers to reply to the differ-
ent user complaint types. From the median reply time, we see that there are types of complaints that
developers take longer to reply to, such as Performance Issues, Missing Notifications and Feature
Requests.

In addition to the results presented in Table 3.4 and Table 3.3, we also use a Bubble plot to
combine these three factors, i.e., complaint impact, frequency and developer replies; this is shown in

Figure 3.3. The y-axis of the plot shows the rank in terms of developer replies, the x-axis shows the

24

rank in terms of impact of the complaint and the size of each bubble is used to represent frequency.
The issues that have the most impact and receive the most replies are in the lower left quadrant, the
issues that have an impact but do not get much developer attention are in the upper left corner, the
issues that do not have a high impact but receive developer attention are in the lower right quadrant
and finally, issues that do not have a high impact and do not receive much developer attention are
shown in the upper right quadrant.

From Figure 3.3, we see that Privacy & Ethical Issues, Spam Notifications, Cost and App
Crashes are important for both, users in terms of impact and receive replies from the develop-
ers. Complaints related to Missing Notifications, Feature Removals and Performance Issues tend to
receive replies, however, they do not tend to have a significant impact on users. On the other hand,
issues related to Installation Problems, Device Compatibility, Connection & Sync Issues and Lack
of Functionality negatively impact users, but, developers do not tend to reply to them often. Lastly,
complaints to Functional Errors, Battery Drainage, Feature Requests and UI Problems tend to be
of low importance to both users (in terms of impact) and developers (in terms of replies).

One take away for developers from this research question is that they need to pay closer attention
to complaints related to the aforementioned issues (e.g., Installation Problems and Device Compat-
ibility), since those are generating the most negative impact on users. This is particularly important
since previous studies showed that responding to user reviews affects the app’s success (Mcllroy et
al., 2015; Palomba et al., 2015). From our results, we observe that developers should put additional

effort in replying to these negatively *impactful’ complaint types to improve their app’s ratings.

The most frequent types of user complains that wearable app developers reply
to are privacy & ethical, performance issues, and spam notifications. Further-
more, installation problems, device compatibility and connection & sync issues

have higher impact but are not replied-to by developers.

25

Table 3.5: Types of Developer Replies

Reply type

Description

Example reply

Request more details

The developer asking for
more details

“Can you record short video with this issue
and send it to me [EMAIL]? Thank you.”

Notify that Issue is
Solved

The issue already solved
in a newer version

“We just released v1.6.1 that fixes the prob-
lem, please update it and let us know if the
problem goes away, thank you.”

Notify that a Solution
is in Progress

Known issue and the de-
velopers work on it

“I think I have identified the issue with
crashes, should be fixed tomorrow.”

Provide a Solution /

Providing a solution to

“Hi... , you can find steps for managing your

‘Workaround solve the issue notifications here: [WEBSITE] Let us know
how it goes!”
Offer Direct Support The developer try to “Hello, please send me an email, I will help.
work directly on the case Because of course it should work !”
Offer Refund The developer provide a “We will have a look at this. Let me know
refund offer your order number to give you a refund.”
Other General replies “Thank you for your feedback.”

3.3.4 How Do Developers Reply to Complaints?

In addition to quantifying the replies to the different complaint types, we also read through and
classified the developer replies. In total, we had 782 replies. Similar to the case for the user reviews,
we tagged each reply and added categories every time a reply did not fit into our existing categories.
In the end, we ended up classifying the replies into 7 unique categories.

Table 3.5 shows the different reply categories, provides a brief description and an example of
each reply category. From the table, we observe that most replies try to provide a solution or gather
more information about the complaints. In the case of paid apps, developers may also offer a refund.

Figure 3.4 shows the percentage of replies in each category. The percentage is simply measured
as the number of replies in a category over all the 782 replies. We find that the majority of the
replies provide a solution to solve the user complaint, followed by replies that request more details
about the issue mentioned in the review and replies to notify the user that a solution is in progress.
Based on Figure 3.4, we see that the top four replies are related to the developers trying to get more

information from the users, whereas, notification that a solution exists and offering a refund are the

26

Provide a Solution

/Workaround 29.5%
Request more Details 17.5%
Notify that a Solution
is in Progress 13.1%
Offer Direct Support 12.6%
P 10.1%]
Issue is Solved 10-T%
Offer Refund
Others 12.5%
o.cl)v., 5.6% 1o.|0% 15.|0% ZO.IO% 25.|0% 3o.|0%

Figure 3.4: Percentage of developer reply types.

two least common replies.

Our results show that developers pay attention to the negative feedback given by users. When
developers reply to low rated reviews, they do so to provide clarification or justification for missing
features or problems in their wearable application. As previous studies have shown, developer
replies tend to result in a positive update to the original low rating given by users (Mcllroy et al.,
2015). However, it is also important to consider that replying to the user is costly for developers.
As we were able to observe from our dataset, the developer replies are manually generated; this
problem needs to be addressed. A possible avenue for future work is to provide developers with a
way to automatically respond to some of the most common complaints, which will lead to better

reviews and minimal work for the developers.

Wearable app developers mostly reply to user complains to provide a solution/-

workaround, request more details and notify the user that a solution is in progress.

3.4 Discussion

Thus far, we examined the user complaints for wearable apps. As mentioned earlier, prior
work by Khalid et al. (2015) performed a similar study but for handheld devices. To determine

the complaints that are specific to wearable apps and the complaints that are shared with handheld

27

Table 3.6: Comparison of Complaint Types for Wear and Handheld Devices. Based on the Findings
Reported by Khalid et al. (2015)

Complaint Type Frequency Rank Impact Rank
Wearable Handheld | Wearable Handheld
Functional Error 1 1 10 7
Cost 2 7 5 2
*Lack of Functionality 3 - 8 -
*Connection & Sync 4 - 4
Device Compatibility 5 8 2 5
UI Problems 6 5 14 10
Battery Drainage 7 12 12 8
App Crashing 8 3 6 4
Installation Problems 9 - 1 -
Feature Request 10 2 13 12
*Spam Notifications 11 - 7 -
Performance Issues 12 10 15 11
*Missing Notifications 13 - 11 -
Privacy & Ethics 14 9 3 1
Feature Removal 15 6 9 3
*Netwrok Problem - 4 - 6
*Uninteresting Content - 11 - 9

devices, we now contrast our findings of complaint types for wearable apps to complaint types of

handheld device apps.

3.4.1 Comparing Wear and Handheld Device User Complaints

Table 3.6 lists the complaint types found by our study and the ones mentioned in the study by
(Khalid et al., 2015). Since the studies are done on a different sets of apps, we feel that it would
be inappropriate to do the comparison of the percentages of reviews, therefore, we compare the
complaint types in terms of their frequency and impact ranks. We observe from Table 3.6 that 11 of
the 15 complaint types reported by our study are also mentioned in the study on handheld devices?.
However, 4 complaint types appear only for wearable apps (marked in bold and with an * in the

table) and 2 complaint types appear only for handheld devices (marked in ifalics and an * in the

table).

3In some cases, the names of the complaints are different, however, we mapped them based on their descriptions, i.e.,
UI Problems is mapped to Interface Design, Battery Drainage is mapped to Resource Heavy and Performance Issues is
mapped to Unresponsive App.

28

We see that complaints related to Lack of Functionality is mentioned, and with a high rank
for wearable apps. The reason that it is mentioned for wearable apps and not handheld devices
could be due to the fact most wearable devices are limited in what they can do, and heavily depend
on the phone for any major features. This is perhaps disappointing for users, who in turn end up
complaining about such issues. For example a user wrote: “Useless app. Very limited features
and designs”. Connection & Sync Issues are also highly ranked and only mentioned for wearable
apps. This problem was very clear from the reviews that we read. As mentioned earlier, in many
cases the wearable apps heavily depend on the handheld devices and due to the fact that there
exist a variety of wearable devices and a wide variety of handheld Android devices (Khalid et al.,
2014), these Connection & Sync Problems are expected. For example a user stated “No longer lets
my Watch stay connected to my phone, completely ridiculous.” The problem is certainly magnified
for wearable devices since they are limited to pretty much just displaying time and counting steps
without a connection to the phone.

Other issues mostly related to notifications (i.e., Spam Notification and Missing Notifications)
are also reported for wearable apps since this is one of the main ways that apps on the handheld
device communicate with the user of the wearable app. As with any notifications, overdoing it
causes users to complain. For example, “Ads: No issues till it started popping up suggested watch
faces in my notifications” .

Moreover, we also highlight in bold the cases where the ranks for the same complaint types
have a clear difference for wearable and handheld devices. Interestingly, we find that although
Cost and Battery Drainage have a lower frequency rank for wearable apps, it has a higher impact
rank compared to handheld devices (note that a lower rank score indicates higher importance).
Device Compatibility is also different and has a lower frequency and impact rank for wearable apps.
On the other hand, we find that App Crashing, Feature Requests, and Feature Removals have a
higher frequency and impact rank for wearable apps. Further analysis as to why these differences
exist is beyond the scope of this thesis, and warrants its own study. We argue that the reasons
for the differences between both kinds of apps cannot be implied by looking at user reviews and
their rating scores. This analysis requires to study additional factors such as hardware and API

limitations that affect wearable and mobile development, which goes beyond the goals of our study.

29

Nevertheless, we do believe that our findings are the first to highlight such differences and open
interesting questions regarding the differences between traditional handheld apps that run on phones

and wearable apps that run on wearable devices.

3.4.2 Update-Related Complaints

A key observation presented in the paper by Khalid et al. (2015) is that many users posted com-
plaints after an update. In handheld devices, update-related complaints account for approximately
11% of their studied reviews (Khalid et al., 2015). Similarly, we also noticed that many reviews
mentioned problems after an update during our manual analysis. In fact, we found that approx-
imately 12% of the examined wearable app complaints mentioned issues arising after an update.
Our finding is similar to that reported by Khalid et al. (2015). A clear example of issues arising

after an update are evident with the following review:

“Oh, my! My watch is completed useless again. Stop updating! Every time you fix a bug, you

create many more!”

Although the study on handheld devices reported that most complaints after an update were
related to functional errors, the addition/removal of a feature, and hidden costs, we found that most
of the complaints for wearable apps were related to Connection & Sync Issues (32.9% of the reviews
that report a problem after an update), Functional Errors (30.5%) and Battery Drainage (23%). For
example, the user in the review below complains about connection problems since the last update

of the app.
“Constantly drops connection to watch since update”

Our findings here draw attention to the importance of regression testing before an update is
released. In particular, we suggest performing regression testing for Connection & Sync and Battery

Drainage Issues.

3.5 Threats to Validity

Our study is subject to a number of internal threats and external threats to validity.

30

Internal Validity

To identify wearable app user complains, we manually classify 2,667 reviews. Like any hu-
man activity, the manual classification is susceptible to human error. To mitigate this threat, two
researchers performed the manual classification. We also measured the agreement between the two
annotators using Cohen’s Kappa, which showed good agreement with value of +0.68.

Due to our manual classification phase being time consuming, we did not cover all of our data
set, instead we took a sample of our dataset. This threat was addressed by taking a statistically
representative sample with a 95% confidence level for each of the apps in our data set.

Our categorization is heavily dependent on the quality of the reviews provided by the users
and their respective developer replies. As shown in prior studies, most user reviews contain useful
information, however, in some cases different levels of details may lead to different complaint types.

Martin, Harman, Jia, Sarro, and Zhang (2015) studied a common problem of sampling bias
when research work analyzes data mined from app stores. This problem exists because of an often-
limited access to a full set of apps and their reviews to be studied. When studies are done only on
subsets of data, they can be potentially biased and draw non-reasonable conclusions.

In the scope of our work, despite our efforts in the data crawling phase, although we did not
face the limitations for crawling described by Martin et al. (2015) in the Google App Store, we do
not claim to have a guaranteed full set of reviews for each app. Furthermore, our work does target
user complains only, which is already a given subset of user reviews; this is unavoidable for our
purpose. However, to address the threat of bias, we took statistically significant random samples of
the reviews for each app we study. These measures were taken precisely to remove bias from the
study while following the similar approach previously used by Khalid et al. (2015)

It is important to note that throughout our study, we use the low ratings given by user reviews,
i.e., 1 or 2 stars ratings, as a way to assess impact. We used this definition of impact, since it was used
by Khalid et al. In their work. That said, we do believe that other definitions for impact are possible.
For example, the messages of the reviews could be analyzed to determine the sentiment expressed
by users; this can be done using a tool such as Sentistrength (Thelwall, Buckley, Paltoglou, Cai, &

Kappas, 2010). In the future, we plan to explore other ways of measuring impact of a review.

31

External Validity

We found over 17,000 wearable app related user reviews but we filtered them down to 5,751,
and hence, our data set can be considered small. This however, is because this platform is fairly new
and we were only able to select the 19 wearable apps that had over 100 user reviews to make our
findings from them relevant. On the same line of thought, the filtering phase for the wearable app
related reviews may have discarded some useful information that did not match our filtering rules.
Moreover, our study is performed on Android Wear apps, hence our findings may not generalize to

wearable apps from other platforms.

3.6 Conclusion

Users provide direct feedback on their experience of mobile apps through user reviews. Prior
work showed that user reviews can be mined to effectively determine user complaints to help devel-
opers understand the issues that users of handheld apps face the most, so they can be mitigated.

Given that wearable apps are a new trend that is only increasing in popularity, in this chapter,
we mine user reviews in order to understand the user complaints of wearable apps. We manually
sample and categorize 2,667 reviews from 19 wearable apps. We find 15 unique complaint types
that wearable users report in user reviews. We also examine the replies that developers post to some
of the user complaints in order to determine complaints that developer care most about and identify
areas that are important for users, but are not well replied-to by developers.

Our findings indicate that the most frequent complaints are related to Functional Errors, Cost
and Lack of Functionality. On the other hand, we find that developers reply most to complaints
related to Privacy & Ethical Issues, Performance Issues and notification-related issues. And, when
developers reply they mostly do so to provide a solution, request more details or let the user know
that they are working on solving the problem. We also compare our findings on wearable apps with
the study by Khalid et al. (2015) on handheld devices and find that 1) that 11 of our 15 complaint
categories are also reported for handheld devices and 2) similar to the case of handheld devices,
approximately 12% of complaints mention an update.

In this chapter our findings show that the most negatively impacting complaints are related to

32

Installation Problems and Device Compatibility. After some investigation, we find that the per-
mission model used in Android contributes to these negatively impacting issues. Hence, in the next
chapter, we perform an empirical study to examine these permission related issues in wearable apps,
particularly issues related to permission mismatches and superfluous features. In addition, we built
a tool that implements our technique to automatically detect these permission problems from an

app’s APK file, which is used to perform our empirical study.

33

Chapter 4

Detecting Permission Problems of

Wearable Apps

4.1 Introduction

Mobile apps are playing an increasingly important role in our daily lives. These mobile apps
can monitor all kinds of activities, e.g., get our location, the interaction with contacts, etc. More
recently, wearable devices that run wearable apps have enhanced the capabilities of these mobile
apps. However, due to their ‘always connected’ nature, privacy and security issues have become a
very important issue.

To help protect users’ privacy and make sure that apps do not intentionally or unintentionally
access data that does not need to be shared, permissions are used to control what an app can access.
For example, if an app needs access to the camera or microphone, it needs to explicitly ask for this
permission in its configuration files (i.e., AndroidManifest.xml file).

Therefore, a plethora of prior work studies permission management in mobile apps. For exam-
ple, work by Au et al. (2012), Stevens et al. (2013) and Jha et al. (2017) showed that the management
of permissions is complicated and that permissions tend to be commonly misused by developers.
Other work analyzed the permissions for apps published on Google Play store and focused on ex-
plaining the permissions usage and its implications on security and privacy (Book, Pridgen, & Wal-

lach, 2013; Dering & McDaniel, 2014; Enck, Ongtang, & McDaniel, 2009; Watanabe, Akiyama,

34

Sakai, & Mori, 2015), and discover permission misuses (Au et al., 2012; Felt et al., 2011; Stevens
et al., 2013), studying the evolution of permissions over time (Calciati & Gorla, 2017; X. Wei et
al., 2012), and suggesting which permission should be requested (Bao et al., 2016; Bao, Lo, Xia, &
Li, 2017; Karim et al., 2016). All of the aforementioned work focused on the permissions of mobile
apps exclusively.

To make a bad situation even worse, the introduction of wearable devices and apps further
complicates the permission management since both, the mobile (i.e., handheld) and wearable apps
need to be in sync when requesting permissions (i.e., the wearable app permissions need to also be
requested by its associated mobile app'). If fact, our findings in the previous chapter showed, that
indeed installation and device compatibility are some of the two most impacting issues. However, to
the best of our knowledge, no work has examined the permission issues related to wearables apps.

In this chapter, we conduct an empirical study to examine the permission problems in the context
of wearable apps. In particular, we focus on two of the most common issues: First, permission
mismatch, which refers to the case where the permissions declared in the mobile and the wearable
versions of the app do not match. Mismatched permissions can cause the wearable app to fail the
installation step or throw a security exception. Second, superfluous features, which refers to the
case where an app requests a permission that requires a specific hardware resource (e.g., access to
the microphone) without really needing that permission. Having superfluous features can cause the
Google Play store to filter out devices that do not support/have the hardware feature, reducing the
potential customer base for the app.

We perform our study on 2,724 apps from the Google Play store that contain a wearable version.
Our findings show that the permission mismatches exist in 6.1% of the released apps on the app
store. Moreover, we find that 19.2% of studied wearable apps contain superfluous features. To
operationalize our work we built a tool, called PERMLYZER, that automatically detects these two
problems from Android APKs. PERMLYZER can be leveraged by developers to ensure that their
APKs do not suffer from any permission related issues prior to release.

This chapter makes the following contributions:

e To the best of our knowledge, this the first study to examine permission problems in the

'For versions before Android 6.0 (API level 23)

35

context of wearable apps.

e We define and examine the two main permission problems - namely the permission mismatch
problem and superfluous features; then we perform an empirical study to examine them by

investigating 2,724 embedded and 339 standalone wearable apps.

e We implement our approach in a tool called PERMLYZER, which will be freely available; also,

we provide our dataset of the crawled and analyzed apps publicly available.

The remainder of this chapter is organized as follows: Section 4.2 provides a background about
Android platform and wearable related concepts. Section 4.3 describes the problems that related to
wearable apps permission model, and Section 4.4 illustrates our approach. In Section 4.5, we show
the findings of our empirical study, and discuss some in Section 4.6. We discuss the limitations of

our study in Section 4.7. Lastly we conclude the chapter and sketch future work in Section 4.8.

4.2 Background

Since wearable apps are fairly new, in this section we present some background on the develop-

ment of wearable apps and the Android platform.

4.2.1 Android Platform and Distribution of Wearable Apps

Android is an open source platform that runs on different types of devices, including but not lim-
ited to wearables, phones, tablets, televisions, and cars. Android apps are distributed mainly through
the Google Play store as APK archive files. Every APK must contain a configuration file in its main
directory called AndroidManifest .xml. This file provides the necessary information about
the app to the Android platform. Among other things, the manifest file does the following: 1) it
describes the app components, 2) it requests the permissions, 3) it declares the required hardware
or software features, and 4) it specifies the minimum and target API level (Android documentation,
2017a).

Wearable apps on the Android platform can be distributed in two ways: 1) by embedding the

wearable app inside a handheld app; or 2) publishing more than one APK under the same app

36

listing using the multiple APK feature of Google Play store, so when a user installs the handheld
app the platform will automatically install the wearable app on the paired wearable device (Android
documentation, 2017e, 2017i). The Android platform also provides a framework of application
programming interfaces (APIs) that apps can use to interact with the underlying functionality of
the platform. Each Android platform version is assigned a unique integer identifier, called the
API Level. Whenever a new platform version releases with an API change, the API level change
to higher number. The new API remains compatible with all earlier API Levels. Therefor, apps
that design for an API level can run on a higher level, but it cannot run on lower level (Android

documentation, 2017k).

4.2.2 The Concept of Permissions in Android Platform

A permission is a restriction that limits access to sensitive data or dangerous device function-
alities. The limitation is imposed to protect critical data and functionalities that could be misused
to distort or damage user experience (Android documentation, 2017a). Thus, developers request
permissions to have access to sensitive data or high risk device functionalities. These permissions
are declared in the AndroidManifest.xml file by adding the <uses-permission> ele-
ment and specify the permission name in the attribute android: name. Line 2 in Listing 4.1 is an
example of requesting a permission to read the received SMS.

Permissions have a protection level to characterize the potential risk implied in the permission.
It indicates the procedure that the Android platform should follow when determining whether or not
to grant the permission to an application requesting it. The Android platform automatically grants
permissions from the Normal protection level (i.,g. BLUETOOTH) at installation, without asking
for the user’s explicit approval; and Dangerous permissions (i.,g. CAMERA and MI CROPHONE) that
are requested by an app might be displayed to the user and require confirmation before it is being
granted. Also, third-party apps can ask for permissions from both Normal and Dangerous protection

level categories.

37

Listing 4.1: Example illustrate the AndroidManifest.xml file

1 |<manifest . . . >
2 <uses-permission android:name="android.permission.READ_SMS" />
3 <uses-feature android:name="android.hardware.telephony"

android:required="true" />

4

5 <application . . .>

6 <activity android:name="com.example.project.FreneticActivity"
android:permission="com.example.project .DEBIT_ACCT" . . . >

7

8 </activity>

9 </application>

10 | </manifest>

Specific to wearable apps, developers have to match permissions that are requested in the
wearable version with permissions requested in handheld version. In other words, all requested
wearable permissions have to also be listed in the manifest file of the handheld app (Android docu-
mentation, 2017¢). However, the release of Android 6.0 (API level 23) has introduced some major
changes in the permission model; 1) apps that target and run on API level 23 or higher require
users to grant their permission at the runtime instead of grant all the permission at once upon in-
stallation; and 2) wearable apps cannot receive permissions granted to the handheld apps (Android

documentation, 2017g, 2017h). These changes affect how wearable app permissions are declared.

4.2.3 App Compatibility

The Android platform is designed to run on different types of devices, from wearables to phones
and tablet devices. This range of devices provides a huge potential audience for an app. The Android
devices have many different configurations such as different hardware features, software features,
platform version and screen configuration. To reach the largest possible user-base for an app, de-
velopers attempt to support as many device configurations as possible. Unfortunately supporting
all device configuration is sometimes not possible. In order to manage an app’s availability based

on device features, the Android platform defines feature IDs for hardware and software features

38

that may not be available on all devices. Thus, developers can restrict their app’s availability to de-
vices through Google Play store based on the device characteristics (Android documentation, 2017c,
2017d). When a developer uploads an app to the Google Play store, the store scans the app’s man-
ifest file and evaluates its elements such as the platform API level, declared features and requested
permissions to establish the set of required features. On the user side, when a user browses an app on
the Google Play store, the store compares the features that the app declared to the features available
on the user’s device to determine compatibility with the available devices (Android documentation,
2017¢). Based on the previous process, the store decides whether the app is available to install on
the user’s device or not.

Developers declare all hardware and software features that their apps depends on in the file
AndroidManifest.xml. The developers declare the features that their app depends on by
adding <uses-feature> element to the manifest file. This element has two main attributes:
1) android:name, to specify the name of the feature; and 2) android: required, to specify
whether the app requires and cannot function without the declared feature, or whether it prefers to
have the feature but can function without it (Android documentation, 2017j). Line 3 in Listing 4.1
is an example of a feature deceleration for an app that depends on telephony functionalities.

For apps that request permissions that depend on hardware features, the Google Play store as-
sumes that the apps use these underlying features and therefore requires the features even if there is
no explicit mention of the required features in the manifest file. For such permissions, the Google
Play store adds the underlying features to the metadata that it stores for every app and sets up filters
for them. For example, if an app requests the RECORD_AUDIO permission but does not declare a
<uses-feature> element for android.hardware.microphone, Google Play store con-
siders that the application requires a microphone and should not be shown to users whose devices do
not have a microphone (Android documentation, 2017j). To avoid setting filters for hardware fea-
tures that the app can operate without them, the app developer could declare the underlying features

in the manifest file and give the value false to the attribute android: required.

39

4.3 Problems

To illustrate the challenge of dealing with permission problems in the context of the wearable

app development. We first enhance the discussion by presenting an example. Second we present the
main two wearable apps permission problems addressed in this chapter.
Motivation Example. According to the wearable permission model, wearable apps should match
their handheld and wearable permissions. For example, if a wearable app needs to have the function-
ality of sending SMS, the app requests the permission SEND_SMS. As a response to the permission
matching requirement, the handheld app should request the same permission even if it does not
need it. When a user installs the handheld app, the Android platform installs the wearable app
on the paired wearable device. Subsequently, the wearable app inherits the permissions that the
platform granted to the handheld app.

Failing to match the permission could cause problems since the wearable app cannot get the
required permissions. On the other hand, considering the handheld app request the permission
SEND_SMS, the Google Play store will consider it as depending on a telephony functionality even if
the app that do not request the feature android.hardware.telephony. Hence, the handheld
app will not be available in devices that does not have the telephony functionality such as most of
tablet devices.

In the following subsections, we discuss how wearable apps permission problems may affect
wearable apps. We focus on the following two permission problems: 1) Permission mismatches
between handheld and wearable apps; and 2) Missing the deceleration of underlying features of

requested permissions.

4.3.1 Permission Mismatches

Description. To distribute a wearable app to users, the wearable APK could be embedded in a
handheld APK. And then, when a user installs the handheld app, the Android platform pushes the
embedded wearable app to the paired wearable device. If the user grants the permissions to the
handheld app at the installation process, the wearable app inherits the granted permissions from the

handheld app. To ensure that the user grants the wearable app’s permissions, developers should

40

match the wearable app’s permissions with the handheld app’s permissions by including all the
permissions declared in the wearable’s manifest into the handheld’s manifest. This process should
be performed even if the handheld app does not use those permissions (Android documentation,
2017f). In case the permissions are not requested properly, i.e., a wearable version of an app may
request a permission that is not requested by the handheld version of the app; we call this the
permission mismatch problem.

Implication. As a result, a wearable app that suffers from the permission mismatch problem cannot
grant its permissions which may lead to one of the following problems; 1) the wearable app fails to
be installed on the wearable device, 2) throws a security exception and/or crash the app (Mujahid,
2017). Additionally, the permission mismatch problem is particularly problematic since: 1) it does
not raise compilation errors or log any message in the 1ogcat; 2) it runs normally on the emulator
or any wearable devices using Android Debug Bridge (adb); 3) it is not automatically detected as
a problem by most IDEs, including Android Studio; and 4) it is hard to catch since it affects only
the devices that run with API level lower than 23. Hence, the permission mismatch problem is
usually caught by users. Subsequently, it leads to a negative user experience, which is reflected in

low ratings and revenues.

4.3.2 Superfluous Features

Description. Feature declarations in the manifest file are informational only, which means that the
Android platform does not check them before installing an app. However, some app stores such as
Google Play checks the feature declarations when it interacts with apps. According to the Android
developer documentation, missing a feature declaration used by an app should be considered an
error (Android documentation, 2017j).

Features and permissions that an app declares in the manifest file could affect the filtering step
that the Google Play store performs. The Google Play store uses features and permissions to de-
termine whether an app is compatible with a device, or the app depends on features that are not
available on the device. The app store checks the permissions in the manifest file of each app
and sets up filters for apps that have permissions that require underlying features even if it not

declared. Thus, requesting a permission in the manifest file could cause Google Play store to set

41

000 3724 Embedded

eee = ooo
000 000 000 Wearable apps
——| — 000 — — 000 — »
— UQI] 000 000 ggg 339 Standalone

o oo Wearable apps
Alternative app Collect 5,077 app Filter out the Find 3,129 free Crawl the apps
stores identifiers paid apps apps form Play Store

Figure 4.1: The overview of data collection process.

filters for features that the app does not depend on. As a result, the app store filters out the app
from compatible devices. Hence, for permissions that depend on underlying features, developers
should explicitly specify in the manifest file whether the app cannot function without the underlying
feature, or whether it prefers to have the feature but can function without it.

Implcation. In case an app misses to declare an underlying feature, the Google Play store auto-
matically adds the feature to the metadata that it stores for the app. Based on the metadata, the
store sets up filters for the features even if the app can handle the absence of them. Moreover, the
underlying features could belong to unused permissions which the app requests them without using
the functionalities that they grant to the app, we call such a case the superfluous feature. As result,
the superfluous features set unexpectedly filters out legitimate compatible devices, which reduces

the potential customer base for the app, negatively impacting its revenues.

4.4 Study Setup

In this section, we detail our dataset collection, and then we describe the approach as it illus-

trated in Figure 4.2. Each step of the approach is detailed in the the following subsections.

4.4.1 Dataset

As it is shown in Figure 4.1, we select the available Android Wear apps on Google Play store
by collecting their identifiers from two alternative app markets: Android Wear Center (Wearable
Software, 2016) and GoKo Store (Korner et al., 2016) that accessed on September 7th, 2017. By
filtering out paid apps from the set of 5,077 apps, we were able to collect 3,129 free apps. We

focus on free apps since we need to download and unpack the apps using our technique. In order

42

Detecting Permission Mismatches

embedded app permissions permission model Mismatches

1

1

1

. . . 1

Extract the N Extract the N Identify the | | Detect Permission | :
1

i

i

I

i i
| Extract the N Identifying the N Identify Unused || Detect Superfluous :
Handheld apps’ ! [Declared Features| | Underlying Features Permissions Features ! Generate the final

i report and suggest fixes
APKfile Detecting Superfluous Features P 88

Figure 4.2: The approach overview.

to download the last version of the selected apps, we built a crawler that interfaces with the Google
Play store API as a regular mobile device to download the handheld apps and as a wearable device to
download the the standalone wearable apps. The apps’ APKs were collected from July 19th through
21st, 2017. We were able to download and unpack 3,063 apps. After downloading and unpacking
the apps, we find 2,724 apps contains an embedded wearable app and 339 apps have a standalone

wearable app.

4.4.2 Detecting Permission Mismatches

Devices that run API level lower than 23 require wearable apps to match their permissions
with the permissions request in handheld version. Nevertheless, in some cases, the wearable app
developers may request permissions that do not exist in the handheld app, resulting a permission
mismatch.

To detect permission mismatches, we start by extracting the embedded wearable app from the
handheld app’s APK. Then, we extract the permissions from both of them. Next, we identify if the
permission model of the wearable app requires matching the permissions; if so, all permissions in
the embedded wearable app should be requested in the handheld app. Finally, we detect the per-
mission mismatches examine the permission of the wearable and the handheld app. The following
subsections are the detailed steps to analyze APK files of an wearable app and detect the permission

mismatch problem. Figure 4.2 illustrates the approach overview.

43

Extract the Embedded Wearable APK

A standard distribution model for Android Wear is embedding a wearable app inside a handheld
app. When users install the handheld app, the Android platform pushes the wearable app to the
paired watch (Android documentation, 2017e).

In order to extract the APK file of the embedded wearable app, we first unpack the handheld
app’s APK and decode the resources using APKTOOL (Tumbleson & Winiewski, 2017); a tool for
reverse engineering Android apps. The tool allows to retrieve nearly original form of the XML files.
After we obtain the unpacked resources for the handheld app, we need to identify the path to the
wearable version’s APK file, so we apply the following steps: 1) extract and parse the XML tree of
AndroidManifest .xml file from the main directory, 2) select the meta data tag that refers to the
wearable app description file? by targeting the tag name com.google.android.wearable.
beta.app, and 3) parse the XML tree for the description file and extract the path of the wearable
APK by targeting the rawPathResId tag. In some cases, a handheld manifest file has a config-
uration mistake, e.g., missing the path of the wearable app description file, or incorrect APK path
could cause a failure in detecting the wearable APK. In such case, we use the MANIFEST . MF file
to detect the path of the wearable APK.

Every Java package has the file MANIFEST .MF as a default manifest, which is stored in the
META-INF directory, the default manifest used to define extensions and package-related data, such
as the list of files and their paths. Since the APK file of the wearable app is packaged inside its
handheld app APK, we use regular expressions to search for paths of all files with . apk extension
from the MANIFEST.MF file. In the case of multiple APK files, we extract and unpack them
to figure out which ones belong to the wearable app. We distinguish the wear app’s APK based
on several heuristics, which include: 1) matching the package ID of the embedded and handheld
apps , 2) looking at the name of the APK file that contains keywords such as ‘wear’, and/or 3)
looking for the usage of tags that indicate the use of wearable hardware in the manifest file, e.g.,

android.hardware.type.watch.

2A file that contains the version and path information of the wearable app APK.

44

Extract the Requested Permissions

First, we parse the file AndroidManifest.xml from both of the handheld app and the
embedded wearable app. Second, for both manifests we select the permissions through targeting the
tags <uses-permission>;then for each tag we read the value of the attribute android:name.

Finally, we check if the permission are belong to Android Open Source Project (AOSP) or to a third

party app.

Identify the Permission Model

Since not all wearable apps are required to match their permission, we check which permission
model that the app should implement. To do so, we select the tag <uses-sdk> from manifest file
of the handheld app and we read the value of its attribute android:minSdkVersion. If the
value is lower than 23, then the app should match the permissions of its wearable version with the

handheld version’s permissions.

Detect Permission Mismatches

Based on the previous step, if the app is required to match the permissions we perform the
process of detecting the permission mismatches. The process starts by matching the two permissions
lists that we extracted from the handheld and the embedded apps. For each permission requested in
the embedded wearable app, we check if it exists in the list of requested permissions in the handheld

app; if not, we report a permission mismatch.

4.4.3 Detecting Superfluous Features

Some permissions grant a functionality that depends on hardware features. To prevent apps
to be installed on incompatible devices, the Google Play store assumes that the app requires the
underlying features of the requested permissions. So, such apps will not be available on devices that
do not have/support that hardware features associated with the requested permissions. However,
apps may request permissions that they do not need in the first place, resulting in what we call,

superfluous features.

45

To detect superfluous features, we start by extracting the declared features form the manifest file.
Next, we identify the underlying features for the requested permissions. Then, for each underlying
feature, we check if the app is actually using the corresponding permissions. Finally, we report the
underlying feature that belong to unused permissions as superfluous features. Figure 4.2 illustrates

an overview of our approach.

Extract the Declared Features

To extract the features that the app declared in its manifest file, we use a similar approach to
the process of extracting the requested permissions that we illustrated in Section 4.4.2. We target
the tags <uses—-feature> in the manifest file; then for each tag, we extract the value of two
attributes: 1) the attribute android:name to get the name of the feature, and 2) the attribute

android:required to check if the app is designed to function without the feature or not.

Identifying the Underlying Features

We describe in Section 4.3.2 that some permissions depend on hardware features, e.g., if an
app requests the permission SEND_SMS, it means the app depends on Telephony API (Android
Developers Reference, 2017). Thus, the app should declare the feature android.hardware.
telephony in its manifest file; if not, we consider such case as missed underlying feature.

In order to detect the missed underlying features for an app, we start by identifying the under-
lying feature for all requested permissions in the app’s manifest file. We depend in this step on a
tool called APKANALYZER (Android Studio, 2017a) from the Android’s Software Development Kit
(SDK). Among other things, this tool extracts features that trigger the filtering of Google Play store.
The output of this tool contains both of the features that are already declared in the manifest file
and the underlying features of requested permissions. Also, if applicable, the tool’s output includes
a mapping between the underlying features and the corresponding permissions. Finally, if a feature
in the output of the APKANALYZER does not exist in the list of declared features that we extracted

in the previous step, we report it as a missed underlying feature.

46

Identify Unused Permissions

In order to use some APIs, the Android Platform requires permissions. For example, calling an
API to access the microphone requires an internal check by the Android platform for the permission
to ensure that the app has the permission RECORD _AUDIO.

To check which permissions that an app uses, we need: 1) a mapping between every public
Android platform API and the required permissions to use that API; and 2) the list of all platform’s
API calls that the app performs. Then, we link the list of API calls that the app performs with the
required permissions for these APIs.

The permission mapping in our approach is based on PSCOUT (Au et al., 2012), a tool that
extracts the permission specifications from the Android platform source code using a static source
code analysis. On the API calls side, we depend on the tool Androguard (Desnos & Gueguen, 2017)
to extract all possible API calls from apps.

At the end of this step, we have two lists of permissions: 1) the list of AOSP’s permissions that
the app requests, which we extracted them in Section 4.4.2 ; and 2) the used permissions by linking
the API calls to their required permissions. The requested permissions that does not appears in the

list of used permissions are considered as unused permissions.

Detecting Superfluous Features

Depending on the previous steps, for each missed underlying feature, we checked its corre-
sponding permission. If the permission does exist in the list of unused permissions, we report its

corresponding feature(s) as a superfluous feature.

4.4.4 Generate the Final Report & Suggest Fixes

To operationalize our work we developed a tool, called PERMLYZER (Permissions Analyzer),
that automatically detects the permission mismatches and the superfluous features. The tool takes
as input, a handheld app’s APK file of wearable app or an APK file of standalone wearable app.
Based on the detected problems the tool generates suggestions to address the problems. Also, the

tool auto-generate a new AndroidManifest . xml file that implements the suggested fixes.

47

4.5 Results

The main goal of our study is to detect permission problems in the context of wearable apps.
Although some prior work examined the permission problems in mobile apps (Martin et al., 2017),
to the best of our knowledge, this is one of the first studies to exclusively focus on the permission
problems in the context of wearable apps. Furthermore, in addition to defining the main problems
related to permission in wearable apps, we also examine and quantify these permission problems in

the apps published on Google Play store. We formalize our study with the following two questions:

e RQI: How widely does the permission mismatch problem exist in wearable apps? In this
question we want to check the existence of the permission mismatch problem in the pub-
lished apps, so we run PERMLYZER on the 2,724 wearable apps. The tool checks if the app
requires matching the handheld/wearable permission, if so, the tool reports the permission

mismatches.

e RQ2: How do wearable apps declare the hardware features of their permissions? To better
understand the problem of missing to declare the underlying features in real word apps, we
use PERMLYZER to analyze the handheld and stand alone wearable apps and detect the missed

underlying features.

For each research question, we provide a motivation, approach, and discuss the result.

RQ1: How widely does the permission mismatch problem exist in wearable apps?
Motivation

Wearable apps need permissions to access sensitive data and functionalities, e.g., read contacts
or access heartbeat sensor. While the wearable app is embedded in a handheld app, the user grants
the permissions to the handheld app and the wearable app inherits them. For this reason developers
match the wearable permissions with the handheld permissions. In production, failing to do so
causes a permission mismatch problem, which affects the ability of running the wearable apps
properly on wearable devices. Hence, our goal is to quantify the amount of apps that suffer from

this permission mismatch problem.

48

1200 Wearable

B Handheld

—_
=1
o
(=)

800

600

400

The Number of Apps

200

0 1 2 3 4 5 6 7 8 9 10 =10
The Number of Requested Permissions

Figure 4.3: Histogram showing the number of wearable and handheld apps at each level of requested
permissions.

Approach

To answer this research question, we use the tool PERMLYZER that internally applies the ap-
proach that we described in Section 4.4.2 to detect the permission mismatches. Matching the
Permissions is required when the wearable app requests permissions that are not requested in it
corresponding handheld app. So, we discard the apps that do not request any permissions in their
wearable version from our analysis. Figure 4.3 shows the amount of requested permissions in the
studied wearable apps. Out of all embedded wearable apps, 541 apps do not request any permissions
at all, thus, they are not required to match their permissions with the wearable permissions. This

filtering left us with a set of 2,178 apps which we analyze to detect permission mismatches.

Findings

The results show that all the 2,178 wearable apps in the analyzed dataset are built to be com-
patible with platform versions that require matching the permission between wearables and hand-
helds (i.e., Android API versions below 23). We find that 132 (6.1%) of the examined apps
suffer from the permission mismatch problem. Of these 132 apps, the number of mismatched
permissions ranges between 1 to 6 permission mismatches, with a median of one mismatched

permission per app. An example, AutomateIt.mainPackage app requests the permission

49

Table 4.1: The most mismatched permissions in the studied apps.

Permission Name Mismatch (%)
READ_CALENDAR 12.10
WAKE_LOCK 11.40
ACCESS_FINE_LOCATION 8.30
RECEIVE_COMPLICATION_DATA 7.60
VIBRATE 7.60
READ_PHONE_STATE 6.80
WRITE_EXTERNAL_STORAGE 6.80
READ_EXTERNAL_STORAGE 6.10
ACCESS_NETWORK_STATE 3.80
BODY_SENSORS 3.80
BLUETOOTH 3.00
INTERNET 2.30

READ_EXTERNAL_STORAGE in the wearable app, but does not request the same permission in the
handheld version.

We also investigate what type of permissions are most likely to be mismatched. Table 4.1 shows
the mismatched permission types and the number of cases for each of them. We observe that the

most commonly missed permissions are related to access the calendar, power manager, and location.

Out of the 2,178 apps that request permissions in its embedded wearable apps,
6.1% suffer from the permission mismatch problem in their last released version

on Google Play store.

RQ2: How do wearable apps declare the hardware features of their permissions?
Motivation

Running an app on incompatible devices can negatively impact the user experience. To avoid
such cases, developers should always declare all features that their apps are using or requiring (An-
droid documentation, 2017j). Apps could use APIs that depend on hardware features of the device.
In order to have access to those APIs, the app should request the suitable permissions in its manifest

file. We call these hardware features that the permission depends on, the underlying feature. To

50

avoid unintentionally making the app available on incompatible devices, the Google Play store con-
siders the underlying features of requested permissions as required by default (Android documen-
tation, 2017j). Some apps can operate or are designed to function even if part/all of the underlying
features are not available. So, missing the declaration of underlying features could be problematic
since the default behavior of the Google Play store could limit the number of devices that can access
the app. Thus, it is important for wearable apps to declare the underlying features of all requested
permissions to avoid having superfluous features.

In this research question, first we want to study how apps declare their hardware features for their
requested permissions. Thus, we examine the use of this functionality in the published wearable
apps on the Google Play store. Second, we study the missed underlying features and examine if

they are superfluous features or not.

Approach

We run the PERMLYZER tool on the 2,724 handheld apps and the 339 standalone wearable
apps. Since, we focus on the deceleration of hardware features, we exclude apps that do not request
permissions that depend on a hardware feature. So, we end up with 999 handheld app and 82

standalone wearable apps.

Findings

We find that all the studied handheld and standalone wearable apps missed a declaration of
underlying features for one or more of their permissions. For example, the handheld app s1ide.
watchFrenzy requests the permission ACCESS WIFI_STATE without declaring its underlying
feature android.hardware.wifi. Moreover, while most of the apps declare some of their
hardware features, we find that only 5 apps out of the 999 handheld apps declare any underlying
features for their permissions; and none of the standalone wearable apps declare any underlying
features. This shows that developers may not know the mapping between the permissions they
request and the hardware features. Figure 4.4 shows the count of missed underlying features in both
of the handheld apps and embedded wearable apps. On median the studied handheld apps missed

to declare 2 hardware features and 17 at max. For the standalone wearable apps, in median they

51

3 3

5 201 E

© ©

(0} (0}

w ('

(0] [0} 4
5 g °
£ 10 g

5] 5]

I I

jo2} jo))

£ K=

= =

5] [5)

2 54 2

=] =)

o o

© © -
S 3 2
[} [}

o o

° ©

] ?

2 2]

s b=

k] ks

3 & 14
- -

z 19 =

[0} Q

F = -

= =

(a) Handheld (b) Standalone wearable

Figure 4.4: The number of missed underlying features in the studied apps.

missed 1 hardware feature and at max 5 features.

To emphasize the underlying feature declarations, Table 4.2 shows the features (Column 1) with
the percentage of apps that declared it as underlying feature (Column 3 & 5) and the percentage
of apps that missed to declare the feature (Column 2 & 4). We observe that the handheld apps
mostly missed the deceleration of location, wifi, and bluetooth feature. For the standalone wearable
apps, bluetooth, camera, wifi, and microphone are the missed underlying features. For example, the
standalone wearable app com.jeremysteckling.facerrel requests ACCESS WIFI_STATE permission
without the declare its underlying feature android.hardware.wifi. As a result, the app is
not available for the wearable devices that do not support the Wi-Fi connectivity.

Also, we find that 523 (52.4%) handheld apps and 66 (80.5%) standalone wearable apps have
at least one superfluous feature. For example, the app com. runar.wearcompass requests the
permissions ACCESS_COARSE_LOCATION and ACCESS_FINE_LOCATION without using their
corresponding APIs, at the same time, the app does not declare that it does not depend on the
feature android.hardware.location which make Google Play store filters the app from
devices that do not provide the functionality of detecting the location.

Table 4.3 shows the list of permissions that introduce the superfluous feature in the studied

52

Table 4.2: The underlying features with the percentage of handheld and standalone wearable apps
that declared/missed the underlying features.

Handheld (%) Standalone (%)
Feature Name Missed Declared | Missed Declared
bluetooth 27.5 - 4.8 -
camera 3.0 - - -
location 62.9 0.2 2.5 -
location.gps 4.0 - - -
location.network 3.1 - - -
microphone 12.4 0.1 0.8 -
telephony 8.5 - - -
wifi 42.4 0.2 1.2 -

handheld apps; for each one of them, we calculate the percentage of affected apps. From this table
we can see that the highest percentage of apps are affected by superfluous features that were intro-
duced by the permissions ACCESS_WIFI_STATE, BLUETOOTH, and BLUETOOTH_ADMIN with
percentage value of 14.3%, 12.7%, and 10.7% respectively. For standalone apps, Table 4.4 shows
that the most superfluous features are introduced by the permission BLUETOOTH with 50.0% and
the permission ACCESS_FINE_LOCATION with 18.3%. We observe that the highest percentage
of apps in both of the handheld and standalone wearable apps are affected by superfluous features

caused by permissions related to network communication and location detection.

Out of the apps that requires underlying features, 523 (52.4%) of handheld apps

and 66 (80.5%) of standalone wearable apps have at least one superfluous feature.

4.6 Discussion

In this section, we discuss the problem of unused permissions in the wearable apps and its
negative impacts. And also we shed light on the differences in the notion of the wearable apps that

the research community should consider when they study the permissions of the Android apps.

53

Table 4.3: List of unused permissions that introduced superfluous features with the percentage of
affected handheld apps.

Permission Name Feature Name Apps (%)
ACCESS WIFI_STATE wifi 14.3
BLUETOOTH bluetooth 12.7
BLUETOOTH_ADMIN bluetooth 10.7
ACCESS_COARSE_LOCATION location 9.4
ACCESS_FINE_LOCATION location 6.4
CHANGE WIFI_STATE wifi 6.4
READ_SMS telephony 5.2
RECORD_AUDIO microphone 4.4
RECEIVE_SMS telephony 3.2
CHANGE WIFI MULTICAST_STATE wifi 1.9
CAMERA camera 1.4
PROCESS_OUTGOING_CALLS telephony 1.3
ACCESS_LOCATION_EXTRA_COMMANDS location 1.1
WRITE_SMS telephony 0.8
SEND_SMS telephony 0.7
ACCESS_FINE_LOCATION location.gps 0.5
ACCESS_MOCK_LOCATION location 0.5
ACCESS_COARSE_LOCATION location.network 0.4
RECEIVE_MMS telephony 0.4
RECEIVE_WAP_PUSH telephony 0.2
WRITE_APN_SETTINGS telephony 0.2
CALL_PRIVILEGED telephony 0.1
MODIFY PHONE_STATE telephony 0.1

Table 4.4: List of unused permissions that introduced superfluous features with the percentage of
affected standalone wearable apps.

Permission Name

Feature Name Apps (%)

BLUETOOTH
ACCESS_FINE_LOCATION
ACCESS_WIFI_STATE
BLUETOOTH_ADMIN
ACCESS_COARSE_LOCATION
CHANGE_WIFI_STATE
CHANGE_WIFI MULTICAST_STATE
RECORD_AUDIO

bluetooth
location
wifi
bluetooth
location
wifi

wifi
microphone

50.0
18.3
6.1
6.1
24
24
1.2
1.2

54

4.6.1 Does matching the permissions contribute to introduction of unused permis-

sions?

Throughout the evolution of an app, developers may introduce and remove different permis-
sions. Previous work showed that mobile apps tend to have more overprivileged permissions (i.e.,
apps that ask for more permissions than they require/need) (Calciati & Gorla, 2017; X. Wei et al.,
2012). As we describe in the Section 4.2.2, permissions requested in an embedded wearable app
may need to be requested in the corresponding handheld app as well. Since wearable and handheld
apps are in two separated modules; developers have to reflect changes in multiple places. This per-
mission model could be error-prone and increase the chance to leave more unused permissions in
the manifest file.

To understand how the requirement of matching the wearable permissions affects the amount
of unused permissions in handheld apps, we examine the amount of unused permissions in the
handheld apps that are requested in their embedded wearable apps. We used PERMLYZER to extract
all unused permissions from the handheld apps. Next, for each app the tool extracts the embedded
wearable app and checks if the unused permissions are requested in the embedded version.

The results showed that; 1) 56.2% (1,532) of handheld apps do have unused permissions; 2) by
analyzing their embedded wearable apps, we observe that 24.2% (371) of handheld apps with un-
used permissions are requesting all the unused permissions in their wearable version. Furthermore,
we find 44.3% (678) of them are requesting at least one of their unused permissions in the wear-
able version. For example, the app com.ppltalkin. findmywatch requests the permissions
WAKE_LOCK and RECORD_AUDIO in the handheld without using their corresponding APIs, how-
ever, the app request these permissions in its wearable version.

Felt et al. (2011) studied 795 mobile apps and showed that 32.7% of them have unused per-
missions. More recently, X. Wei et al. (2012) studied 1,703 app versions and found that 33.2% of
them have unused permissions. By comparing the unused permissions in the wearable apps, we find
that wearable apps have about 1.7x more unused permissions. As the the comparison shows, the

permission matching requirement can be a factor to introduce unused permissions.

55

4.6.2 Overprivileged Permissions Vs. Unused Permissions

Overprivileged permissions are permissions that apps request but their corresponding APIs
never use. So, removing those permissions should not affect the app functionality. These over-
privileged permissions could introduce vulnerabilities and raise security concerns (X. Wei et al.,
2012).

Several studies analyzed the permissions for apps published on the Google Play store and fo-
cused on explaining the permission usage and its implications on security and privacy (Book et al.,
2013; Dering & McDaniel, 2014; Enck et al., 2009; Watanabe et al., 2015), evolution over time
(Calciati & Gorla, 2017; X. Wei et al., 2012), discover permission misuses and overprivilegesd (Au
et al., 2012; Felt et al., 2011; Stevens et al., 2013) and suggest which permissions should be re-
quested (Bao et al., 2016, 2017; Karim et al., 2016). To best of our knowledge, previous studies
do not consider the notion of wearable apps when they perform analysis that deal with the problem
of overprivileged permissions. So, permissions that are not mapped to an API call are considered
as overprivileged; although for wearables, the handheld apps may hold unused permissions to sat-
isfy the permission matching requirement. Hence, not all of the unused permission necessary are
overprivileged permissions.

Our analyses shows that out of all apps that request unused permissions, only 55.7% of them that
all of their unused permissions are legitimately privileged. And 24.4% of all unused permissions
in wearable apps are legitimately privileged. The evidence shows that a high percentage of unused
permissions in wearable apps are legitimately privileged. Thus, it is useful for follow up research
to consider the notion of wearable apps in order to improve the accuracy of their results when they

analyze such apps.

4.7 Threats to Validity

In this section, we disuses the threats to validity of our study.

56

Threats to Internal Validity

Our results depend on the accuracy of the used tools. To detect the unused permission, the
presented approach relies on Androguard (Desnos & Gueguen, 2017) tool to extract the platform
API calls using a static analysis approach and on the mapping of PSCOUT (Au et al., 2012) tool to
link the platform APIs with the corresponding permission. To help alleviate this threat, we manually
investigated some of the result reported unused permissions and in all cases the manually examined
cases were correct.

Our results also include only AOSP permissions in the process of analyzing unused permissions.

Other third party permission could have different pattern in term of declare the unused permissions.

Threats to External Validity

We apply our techniques on free wear apps only, because of this, our results may not be general-
izable to paid wearable apps. Also, our empirical study is based on apps that are already published
on Google Play store. This means our results does not reflect the problems in apps that set filtrates
that prevent the them to be available for the device that our script used it face Google Play store in
the crawling process.

The permission matching model are required only for wearable apps that need to support devices
run API level lower than 23. However, a snapshot of data represents all the devices that visited the
Google Play store shows that more than 50% of devices running on Android version with API level
lower than 23 (Android documentation, 2017b), which highlight the importance of supporting such

devices.

4.8 Conclusion

Wearable devices’ popularity is increasing. In fact, based on our data collection, the Google Play
store contains more than 5,077 wearable apps. In this chapter we defined two permission problems
related to wearable apps - namely permission mismatches and superfluous features. To mitigate the

problems, we propose a technique to detect permission problems in wearable apps. We implement

3Data collected during a 7-day period ending on October 2, 2017

57

our technique in a tool called PERMLYZER, which automatically detect these permission problems
form an app’s APK. We run PERMLYZER on top of 2,724 app that have embedded wearable version
and 339 standalone wearable app.

Our result shows that I) 6% of wearable apps that request permissions are suffering from the
permission mismatching problem; II) out of the apps that requires underlying features, 523 (52.4%)
of handheld apps and 66 (80.5%) of standalone wearable apps have at least one superfluous feature;
III) all the studied apps missed a declaration of underlying features for one or more of their per-
missions, which shows that developers may not know the mapping between the permissions they

request and the hardware features.

58

Chapter 5

Summary, Contributions and Future

Work

This chapter concludes the thesis. We presents summary of results presented throughout this

thesis. We then discuss possible directions for future work.

5.1 Summary of Addressed Topics

This thesis focuses on the challenges of software development of wearable apps. First, we
conduct an empirical study to understanding the main issues in developing wearable apps and their
impact on the apps’ users. Then, we propose a technique to detect permission problems, which raise
issues that have the most negative impact on wearable app users and built a tool that automatically
detects these problems, called PERMLYZER.

The following are the summaries of this thesis chapters.

Chapter 3 presents what wearable apps’ users complain about. In this chapter, we study users’
complains through the examination of users reviews posted on Google Play store. We conducted
an qualitative analysis where we analyze 2,667 user’s review. We found that: 1) Functional Errors,
Cost, and Lack of Functionality are the three most frequent complaints; 2) Installation Problems,
Device Compatibility, and Privacy & Ethical Issues are the most negatively perceived by users; 3)

developers are most likely to reply to complaints related to Privacy & Ethical Issues, Performance

59

Issues, and Spam Notifications. We also contrast the complaints based on their impact and the
developer replies and find that Installation Problems, Device Compatibility, and Connection & Sync
Issues are most impacting, but have a low response rate from developers.

Chapter 4 presents the main permission problems in wearable apps. In this chapter, we studied
the problem of permissions in the context of wearable apps. We identified the main permission
problems, and we conducted an empirical study to examine the prevalence of these problems and
their impact on real-world wearable apps. Our findings show that: 1) 6.1% (132) of wearable
apps that request permissions are suffering from the permission mismatching problem, which cause
falling the app to be installed on the wearable device or throws a security exception; 2) 19.2% of
the studied wearable apps contain superfluous features, which causes the Google Play store to filter
out devices that do not support/have this hardware feature, reducing the potential customer base for

the app.

5.2 Contributions

The major contributions of this thesis are as follows:

e Empirically investigate user complaints in wearable apps by manually classify 2,667 reviews
belonging to 19 wearable apps; then measured the frequency of the complaints and how

negatively they are perceived by users.

e Examine the developer replies to the studied complaints in order to better understand the areas

that receive enough attention and areas that are important to the users.

e Define and examine the two main permission problems that are related to the most nega-
tively impactful user complaints; then perform an empirical study to examine them through

investigating 2,724 embedded apps and 339 standalone wearable apps.

e Implement our approach of detecting wearable permissions’ problems in a tool called PERMLYZER,

which will be freely available.

e Provide our dataset of the crawled apps’ APKs, the detailed analyses data, the collected 1.2

million reviews, and the manually classifying of the reviews to be publicly available.

60

5.3 Future Work

We believe that our thesis makes a positive contribution towards the goal of understanding the
challenges of wearable apps development. However, there are still many open challenges that need
to be tackled to improve the development of wearable apps. We now highlight some avenues for

future work.

5.3.1 Considering other aspects to assess the impact of user complaints

Throughout our study, we use the low ratings given by user reviews, i.e., 1 or 2 stars ratings, as
a way to assess impact. We do believe that other definitions for impact are possible. For example,
the messages of the reviews could be analyzed to determine the sentiment expressed by users. In

the future, we plan to explore other ways of measuring impact of a user review.

5.3.2 Expanding the scope of our tool

In our investigation in this thesis, we observe many other problems related to the spatiality
of wearable apps; e.g., improper configuration of the type of wearable app, registration of unused
broadcast receiver, or definition of deprecated wearable filters. Such problems affect the availability,
performance and quality of wearable apps. Addressing these problems can positively impact the the

wearable apps development.

5.3.3 Measuring the impact of the requested permissions and features

Also, it will be helpful for a developers to receive real-time feedback about the impact of the
each feature or permission that they request, showing the number of potential users’ devices that will
be eliminated for his/her app. Using the same technique, an empirical study can help to understand

the evolution of permissions and features across the apps’ versions over time.

5.3.4 Extending to other platforms

Our study is performed on Android Wear apps, hence our findings may not generalize to wear-

able apps from other platforms. So, a future work will be to examine other platforms and explore

61

the differences in term of problems and complaints.

62

References

Ahola, J. (2015). Challenges in android wear application development. In Proceedings of the 15th
international conference on web engineering (pp. 601-604). Springer.

Android Developers Reference. (2017). Telephony. https://developer.android.com/
reference/android/provider/Telephony.html. (Accessed on December 1,
2017)

Android documentation. (2016a). Creating wearable apps. https://developer.android
.com/training/wearables/apps/index.html. (Accessed on October 2, 2016)

Android documentation. (2016b). Filters on google play. https://developer.android
.com/google/play/filters.html. (Accessed on December 18, 2016)

Android documentation. (2017a). App manifest. https://developer.android.com/
guide/topics/manifest/manifest—-intro.html. (Accessed on November 30,
2017)

Android documentation. (2017b). Dashboards. https://developer.android.com/
about /dashboards/index.html. (Accessed on October 31, 2017)

Android documentation. (2017c). Device compatibility. https://developer.android
.com/guide/practices/compatibility.html. (Accessed on October 4, 2017)

Android documentation. (2017d). Multiple apk support. https://developer.android
.com/google/play/publishing/multiple—apks.html. (Accessed on October
4,2017)

Android documentation. (2017e). Packaging wearable apps. https://developer.android

.com/training/wearables/apps/packaging.html. (Accessed on January 19,

63

https://developer.android.com/reference/android/provider/Telephony.html
https://developer.android.com/reference/android/provider/Telephony.html
https://developer.android.com/training/wearables/apps/index.html
https://developer.android.com/training/wearables/apps/index.html
https://developer.android.com/google/play/filters.html
https://developer.android.com/google/play/filters.html
https://developer.android.com/guide/topics/manifest/manifest-intro.html
https://developer.android.com/guide/topics/manifest/manifest-intro.html
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/guide/practices/compatibility.html
https://developer.android.com/guide/practices/compatibility.html
https://developer.android.com/google/play/publishing/multiple-apks.html
https://developer.android.com/google/play/publishing/multiple-apks.html
https://developer.android.com/training/wearables/apps/packaging.html
https://developer.android.com/training/wearables/apps/packaging.html

2017)

Android documentation. (2017f). Packaging wearable apps. https://developer.android
.com/training/wearables/apps/packaging.html. (Accessed on January 19,
2017)

Android documentation. (2017g). Requesting permissions at run time. https://developer
.android.com/training/permissions/requesting.html. (Accessed on Oc-
tober 4, 2017)

Android documentation. (2017h). Requesting permissions on android wear. https://
developer.android.com/training/articles/wear—-permissions.html.
(Accessed on October 31, 2017)

Android documentation. (2017i). Standalone apps. https://developer.android.com/
training/wearables/apps/standalone-apps.html. (Accessed on November
30, 2017)

Android documentation. (2017j). uses-feature. https://developer.android.com/
guide/topics/manifest/uses—feature-element.html. (Accessed on Octo-
ber 6, 2017)

Android documentation. (2017k). uses-sdk element. https://developer.android.com/
guide/topics/manifest/uses—sdk-element.html. (Accessed on October 4,
2017)

Android Studio. (2017a). Apk analyzer tool. https://developer.android.com/
studio/command-line/apkanalyzer.html. (Accessed on December 1, 2017)

Android Studio. (2017b). Improve your code with lint. https://developer.android.com/
studio/write/lint.html. (Accessed on June 11, 2017)

Au, K. W. Y., Zhou, Y. F,, Huang, Z., & Lie, D. (2012). Pscout: Analyzing the android permis-
sion specification. In Proceedings of the acm conference on computer and communications
security (pp. 217-228). ACM.

Bao, L., Lo, D., Xia, X., & Li, S. (2016, Nov). What permissions should this android app request?
In Proceedings of international conference on software analysis, testing and evolution (p. 36-

41).

64

https://developer.android.com/training/wearables/apps/packaging.html
https://developer.android.com/training/wearables/apps/packaging.html
https://developer.android.com/training/permissions/requesting.html
https://developer.android.com/training/permissions/requesting.html
https://developer.android.com/training/articles/wear-permissions.html
https://developer.android.com/training/articles/wear-permissions.html
https://developer.android.com/training/wearables/apps/standalone-apps.html
https://developer.android.com/training/wearables/apps/standalone-apps.html
https://developer.android.com/guide/topics/manifest/uses-feature-element.html
https://developer.android.com/guide/topics/manifest/uses-feature-element.html
https://developer.android.com/guide/topics/manifest/uses-sdk-element.html
https://developer.android.com/guide/topics/manifest/uses-sdk-element.html
https://developer.android.com/studio/command-line/apkanalyzer.html
https://developer.android.com/studio/command-line/apkanalyzer.html
https://developer.android.com/studio/write/lint.html
https://developer.android.com/studio/write/lint.html

Bao, L., Lo, D, Xia, X., & Li, S. (2017, Jul 28). Automated android application permission
recommendation. Science China Information Sciences, 60(9), 092110.

Barrera, D., Kayacik, H. G., van Oorschot, P. C., & Somayaji, A. (2010). A methodology for
empirical analysis of permission-based security models and its application to android. In
Proceedings of the 17th acm conference on computer and communications security (pp. 73—
84). ACM.

Bonato, P. (2010, May). Wearable sensors and systems. IEEE Engineering in Medicine and Biology
Magazine, 29(3), 25-36.

Book, T., Pridgen, A., & Wallach, D. S. (2013). Longitudinal analysis of android ad library permis-
sions. arXiv preprint arXiv:1303.0857.

Calciati, P., & Gorla, A. (2017, May). How do apps evolve in their permission requests? a pre-
liminary study. In Proceedings of 14th ieee/acm international conference on mining software
repositories (p. 37-41).

Chauhan, J., Seneviratne, S., Kaafar, M. A., Mahanti, A., & Seneviratne, A. (2016). Characteriza-
tion of early smartwatch apps. In Proceedings of the 2016 ieee international conference on
pervasive computing and communication workshops (pp. 1-6). 1IEEE.

Chen, N., Lin, J., Hoi, S. C., Xiao, X., & Zhang, B. (2014). Ar-miner: mining informative re-
views for developers from mobile app marketplace. In Proceedings of the 36th international
conference on software engineering (pp. 767-778). ACM.

Ciurumelea, A., Schaufelbhl, A., Panichella, S., & Gall, H. C. (2017, Feb). Analyzing reviews and
code of mobile apps for better release planning. In Proceedings of the 24th ieee international
conference on software analysis, evolution and reengineering (p. 91-102). IEEE.

Cohen, J. (1960). A coefficient of agreement for nominal scale. Educational and Psychological
Measurement, 20, 37-46.

Dering, M. L., & McDaniel, P. (2014). Android market reconstruction and analysis. In Proceedings
of the ieee military communications conference (pp. 300-305). IEEE Computer Society.

Desnos, A., & Gueguen, G. (2017). Androguard: Reverse engineering, malware and
goodware analysis of android applications). https://github.com/androguard/

androguard. (Accessed on November 27, 2017)

65

https://github.com/androguard/androguard
https://github.com/androguard/androguard

Di Sorbo, A., Panichella, S., Alexandru, C. V., Shimagaki, J., Visaggio, C. A., Canfora, G., & Gall,
H. C. (2016). What would users change in my app? summarizing app reviews for recom-
mending software changes. In Proceedings of the 24th acm sigsoft international symposium
on foundations of software engineering (pp. 499-510). ACM.

Di Sorbo, A., Panichella, S., Alexandru, C. V., Visaggio, C. A., & Canfora, G. (2017). Surf:
Summarizer of user reviews feedback. In Proceedings of the 39th international conference
on software engineering companion (pp. 55-58). IEEE Press.

Do, Q., Martini, B., & Choo, K.-K. R. (2017). Is the data on your wearable device secure? an
android wear smartwatch case study. Software: Practice and Experience, 47(3), 391-403.

Enck, W., Ongtang, M., & McDaniel, P. (2009). On lightweight mobile phone application certifica-
tion. In Proceedings of the 16th acm conference on computer and communications security
(pp- 235-245). ACM.

Felt, A. P,, Chin, E., Hanna, S., Song, D., & Wagner, D. (2011). Android permissions demystified.
In Proceedings of the 18th acm conference on computer and communications security (pp.
627-638). ACM.

Finkelstein, A., Harman, M., Jia, Y., Martin, W., Sarro, F., & Zhang, Y. (2017). Investigating the
relationship between price, rating, and popularity in the blackberry world app store. Informa-
tion and Software Technology, 87, 119-139.

Fleiss, J. L., & Cohen, J. (1973). The equivalence of weighted kappa and the intraclass correlation
coefficient as measures of reliability. Educational and Psychological Measurement, 33, 613—
619.

Fu, B., Lin, J., Li, L., Faloutsos, C., Hong, J., & Sadeh, N. (2013). Why people hate your app:
Making sense of user feedback in a mobile app store. In Proceedings of the 19th acm sigkdd
international conference on knowledge discovery and data mining (pp. 1276-1284). ACM.

Galvis Carreno, L. V., & Winbladh, K. (2013). Analysis of user comments: An approach for
software requirements evolution. In Proceedings of the 2013 international conference on
software engineering (pp. 582-591). 1EEE Press.

Guzman, E., & Maalej, W. (2014, Aug). How do users like this feature? a fine grained senti-

ment analysis of app reviews. In Proceedings of the 22nd ieee international requirements

66

engineering conference (p. 153-162). IEEE.

Ha, E., & Wagner, D. (2013, Jan). Do android users write about electric sheep? examining con-
sumer reviews in google play. In Proceedings of the 10th ieee consumer communications and
networking conference (p. 149-157). IEEE.

Harman, M., Jia, Y., & Zhang, Y. (2012). App store mining and analysis: Msr for app stores. In
Proceedings of the 9th ieee working conference on mining software repositories (pp. 108—
111). IEEE Press.

Hoon, L., Vasa, R., Schneider, J.-G., & Mouzakis, K. (2012). A preliminary analysis of vocab-
ulary in mobile app user reviews. In Proceedings of the 24th australian computer-human
interaction conference (pp. 245-248). ACM.

Jha, A. K., Lee, S., & Lee, W. J. (2017). Developer mistakes in writing android manifests: An
empirical study of configuration errors. In Proceedings of the 14th international conference
on mining software repositories (pp. 25-36). Piscataway, NJ, USA: IEEE Press.

Karim, M. Y., Kagdi, H., & Penta, M. D. (2016, March). Mining android apps to recommend
permissions. In Proceedings of the 23rd ieee international conference on software analysis,
evolution, and reengineering (Vol. 1, p. 427-437). IEEE Press.

Keertipati, S., Savarimuthu, B. T. R., & Licorish, S. A. (2016). Approaches for prioritizing feature
improvements extracted from app reviews. In Proceedings of the 20th international confer-
ence on evaluation and assessment in software engineering (pp. 33:1-33:6). ACM.

Khalid, H., Nagappan, M., Shihab, E., & Hassan, A. E. (2014). Prioritizing devices to test your app
on: A case study of android game apps. In Proceedings of the 22nd acm sigsoft international
symposium on foundations of software engineering (pp. 610-620). IEEE.

Khalid, H., Shihab, E., Nagappan, M., & Hassan, A. E. (2015). What do mobile app users complain
about? IEEE Software, 32(3), 70-77.

Korner, J., Hitzges, L., & Gehrke, D. (2016). Goko. http://goko.me.

Lyons, K. (2015). What can a dumb watch teach a smartwatch?: Informing the design of smart-
watches. In Proceedings of the 2015 acm international symposium on wearable computers
(pp- 3-10). ACM.

Martin, W., Harman, M., Jia, Y., Sarro, F., & Zhang, Y. (2015). The app sampling problem for app

67

http://goko.me

store mining. In Proceedings of the 12th ieee/acm working conference on mining software
repositories (pp. 123—133). IEEE.

Martin, W., Sarro, F., Jia, Y., Zhang, Y., & Harman, M. (2017, Sept). A survey of app store analysis
for software engineering. IEEE Transactions on Software Engineering, 43(9), 817-847.
Mcllroy, S., Ali, N., Khalid, H., & Hassan, A. E. (2016). Analyzing and automatically labelling the
types of user issues that are raised in mobile app reviews. Empirical Software Engineering,

21(3), 1067-1106.

Mcllroy, S., Shang, W., Ali, N., & Hassan, A. (2015). Is it worth responding to reviews? a case
study of the top free apps in the google play store. IEEE Software.

Min, C., Kang, S., Yoo, C., Cha, J., Choi, S., Oh, Y., & Song, J. (2015). Exploring current practices
for battery use and management of smartwatches. In Proceedings of the acm international
symposium on wearable computers (pp. 11-18). ACM.

Mujahid, S. (2017). Detecting wearable app permission mismatches: A case study on android
wear. In Proceedings of the 11th joint meeting on foundations of software engineering (pp.
1065-1067). ACM.

Mujahid, S., Sierra, G., Abdalkareem, R., Shihab, E., & Shang, W. (2017). Examining user com-
plaints of wearable apps: A case study on android wear. In Proceedings of the 4th interna-
tional conference on mobile software engineering and systems (pp. 96-99). Piscataway, NJ,
USA: IEEE Press.

Nagappan, M., & Shihab, E. (2016). Future trends in software engineering research for mobile apps.
In Proceedings of the 23rd ieee international conference on software analysis, evolution, and
reengineering. IEEE.

Pagano, D., & Maalej, W. (2013). User feedback in the appstore: An empirical study. In Proceed-
ings of the 21st ieee international requirements engineering conference (p. 125-134). IEEE
Press.

Palomba, F., Linares-Vsquez, M., Bavota, G., Oliveto, R., Penta, M. D., Poshyvanyk, D., & Lucia,
A.D. (2015, Sept). User reviews matter! tracking crowdsourced reviews to support evolution
of successful apps. In Proceedings of the 31st ieee international conference on software

maintenance and evolution (p. 291-300). IEEE.

68

Palomba, F., Salza, P., Ciurumelea, A., Panichella, S., Gall, H., Ferrucci, F., & De Lucia, A. (2017).
Recommending and localizing change requests for mobile apps based on user reviews. In
Proceedings of the 39th international conference on software engineering (pp. 106-117).
IEEE Press.

Pandita, R., Xiao, X., Yang, W., Enck, W., & Xie, T. (2013). Whyper: Towards automating risk
assessment of mobile applications. In Proceedings of the 22nd usenix conference on security
(pp. 527-542). Berkeley, CA, USA: USENIX Association. Retrieved from http://dl
.acm.org/citation.cfm?id=2534766.2534812

Panichella, S., Di Sorbo, A., Guzman, E., Visaggio, C. A., Canfora, G., & Gall, H. C. (2016).
Ardoc: App reviews development oriented classifier. In Proceedings of the 24th acm sigsoft
international symposium on foundations of software engineering (pp. 1023-1027). ACM.

Panichella, S., Sorbo, A. D., Guzman, E., Visaggio, C. A., Canfora, G., & Gall, H. C. (2015,
Sept). How can i improve my app? classifying user reviews for software maintenance and
evolution. In Proceedings of the 31st ieee international conference on software maintenance
and evolution (p. 281-290). IEEE.

Park, S., & Jayaraman, S. (2003). Smart textiles: Wearable electronic systems. MRS Bulletin, 28(8),
585591.

Rawassizadeh, R., Price, B. A., & Petre, M. (2015). Wearables: has the age of smartwatches finally
arrived? Communications of the ACM, 58(1), 45-47.

Seaman, C. B. (1999). Qualitative methods in empirical studies of software engineering. /EEE
Transactions on Software Engineering (IST), 25(4), 557-572.

Stevens, R., Ganz, J., Filkov, V., Devanbu, P., & Chen, H. (2013, May). Asking for (and about)
permissions used by android apps. In Proceedings of the 10th working conference on mining
software repositories (p. 31-40). IEEE Press.

Tehrani, K., & Michael, A. (2014, March). Wearable technology and wearable devices: Ev-
erything you need to know. Wearable Devices Magazine. Retrieved from http://www
.wearabledevices.com/what-is—-a-wearable-device/ (Accessed on August
25,2017)

Teng, X. F., Zhang, Y. T., Poon, C. C. Y., & Bonato, P. (2008). Wearable medical systems for

69

http://dl.acm.org/citation.cfm?id=2534766.2534812
http://dl.acm.org/citation.cfm?id=2534766.2534812
http://www.wearabledevices.com/what-is-a-wearable-device/
http://www.wearabledevices.com/what-is-a-wearable-device/

p-health. IEEE Reviews in Biomedical Engineering, 1, 62-74.

Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., & Kappas, A. (2010). Sentiment strength
detection in short informal text. Journal of the American Society for Information Science and
Technology, 61(12), 2544-2558.

Tumbleson, C., & Winiewski, R. (2017). Apktool - a tool for reverse engineering 3rd party, closed,
binary android apps. https://ibotpeaches.github.io/Apktool/. (Accessed
on May 4, 2017)

Usman, M., Britto, R., Brstler, J., & Mendes, E. (2017). Taxonomies in software engineering: A
systematic mapping study and a revised taxonomy development method. Information and
Software Technology, 85(Supplement C), 43 - 59.

Vasa, R., Hoon, L., Mouzakis, K., & Noguchi, A. (2012). A preliminary analysis of mobile app
user reviews. In Proceedings of the 24th australian computer-human interaction conference
(pp- 241-244). ACM.

Watanabe, T., Akiyama, M., Sakai, T., & Mori, T. (2015). Understanding the inconsistencies
between text descriptions and the use of privacy-sensitive resources of mobile apps. In Pro-
ceedings of eleventh symposium on usable privacy and security (pp. 241-255). USENIX.

Wearable Software. (2016). Android wear center. http://www.androidwearcenter.com.

Wei, J. (2014, July). How wearables intersect with the cloud and the internet of things : Considera-
tions for the developers of wearables. IEEE Consumer Electronics Magazine, 3(3), 53-56.

Wei, X., Gomez, L., Neamtiu, 1., & Faloutsos, M. (2012). Permission evolution in the android
ecosystem. In Proceedings of the 28th annual computer security applications conference (pp.
31-40). ACM.

Wright, R., & Keith, L. (2014). Wearable technology: If the tech fits, wear it. Journal of Electronic
Resources in Medical Libraries, 11(4), 204-216.

Zhang, H., & Rountev, A. (2017). Analysis and testing of notifications in android wear applications.

In Proceedings of the 39th international conference on software engineering. 1IEEE Press.

70

https://ibotpeaches.github.io/Apktool/
http://www.androidwearcenter.com

	List of Figures
	List of Tables
	Introduction and Problem Statement
	Thesis Overview
	Thesis Contributions

	Literature Review
	Work Leveraging Mobile User Reviews
	Work Focusing on Wearable Apps
	Work Focusing on Manifest and Permissions

	An Empirical Study of Android Wear User Complaints
	Introduction
	Study Design
	Data Collection and Selection
	Manual Classification of User Reviews

	Results
	What do Wearable App Users Complain About?
	Which User Complaint Types are the Most Negatively Impacting?
	What Types of Complaints Do Developers Reply to?
	How Do Developers Reply to Complaints?

	Discussion
	Comparing Wear and Handheld Device User Complaints
	Update-Related Complaints

	Threats to Validity
	Conclusion

	Detecting Permission Problems of Wearable Apps
	Introduction
	Background
	Android Platform and Distribution of Wearable Apps
	The Concept of Permissions in Android Platform
	App Compatibility

	Problems
	Permission Mismatches
	Superfluous Features

	Study Setup
	Dataset
	Detecting Permission Mismatches
	Detecting Superfluous Features
	Generate the Final Report & Suggest Fixes

	Results
	Discussion
	Does matching the permissions contribute to introduction of unused permissions?
	Overprivileged Permissions Vs. Unused Permissions

	Threats to Validity
	Conclusion

	Summary, Contributions and Future Work
	Summary of Addressed Topics
	Contributions
	Future Work
	Considering other aspects to assess the impact of user complaints
	Expanding the scope of our tool
	Measuring the impact of the requested permissions and features
	Extending to other platforms

	Bibliography

